Skocz do zawartości

Mr_Wind

Użytkownicy
  • Zawartość

    3
  • Rejestracja

  • Ostatnio

Reputacja

7 Neutralna

O Mr_Wind

  • Ranga
    1/10

Informacje

  • Płeć
    Mężczyzna

Ostatnio na profilu byli

Blok z ostatnio odwiedzającymi jest wyłączony i nie jest wyświetlany innym użytkownikom.

  1. Cześć! Zakładam, że skoro czytasz ten wpis to zapewne interesuje Ciebie elektronika/robotyka/majsterkowanie i zastanawiasz się jak skonstruować swojego robota. A może szukasz inspiracji? Motywacji do dalszego działania? Jeżeli odpowiedź brzmi tak, to zapraszam Ciebie do przeczytania mojego wpisu. Traktuje on o moim pierwszym elektronicznym projekcie - linefollowerze o wdzięcznym imieniu Ianush88. Wpis podzieliłem na poszczególne fragmenty tak, abyś łatwo trafił do sekcji które Ciebie interesują najbardziej. Początek każdego z nich będzie oznaczony pogrubionym tekstem. To tyle jeżeli chodzi o wstęp, zapraszam do lektury! Ważna uwaga: Ze względu na fakt, że jest to mój pierwszy projekt i ma dla mnie głównie charakter edukacyjny w wielu przypadkach zdecydowałem się na wybór prostych rozwiązań, które o wiele łatwiej zaimplementować i ewentualnie naprawić. Nad optymalizacją konstrukcji postanowiłem się skupić w ewentualnej przyszłej ewolucji tego projektu. Konstrukcja & mechanika Ianush88 to klasyczny przedstawiciel rodziny linefollower - składa się z dwóch płytek PCB połączonych ze sobą dwoma kątownikami z tworzywa sztucznego. Do głównej (większej) płytki PCB przymocowane są silniki prądu stałego Pololu HP z przekładnią 10:1 - standardowy wybór zdecydowanej większości konstruktorów linefollowerów ze względu na optymalny balans między maksymalną prędkością obrotową (3000 obr/min) a generowanym momentem (0,22 kg*cm). Do wałów silników zamocowane są koła Solarbotics RW2 - wybrałem je głównie ze względu na ich bezproblemową dostępność i łatwość w połączeniu z całą konstrukcją. Muszę przyznać, że odpowiednio wyczyszczone generują całkiem sporo przyczepności. Niestety nie mam porównania z oponami mini-z czy odlewanymi z silikonu, ale jestem z nich zadowolony. Przednia płytka PCB zawierająca czujniki linii opiera się na podłożu przy pomocy dwóch tranzystorów THT w obudowie TO-92. Ich nóżki przylutowałem do płytki a obudowy przetarłem lekko papierem ściernym tak, by swoimi krawędziami nie zahaczały o nierówności trasy. Elektronika Robot zasilany jest z akumulatora 2S 7.4V (korzystam z trzech o różnych wartościach pojemności: 150mAh, 250mAh i 800mAh). Napięcie z akumulatora jest stabilizowane i obniżane do 5V przez stabilizator napięcia LM1117. Mózgiem całej konstrukcji jest Atmega16A - wybrana przeze mnie ze względu na moją znajomość tej rodziny mikrokontrolerów. Taktowana jest przez sygnał z kwarcu o częstotliwości 16MHz. Posiada istotne ze względu na projekt peryferia: ośmiokanałowy, 10 - bitowy przetwornik ADC, UART do komunikacji z zewnętrznym urządzeniem oraz trzy timery. Każdy z ośmiu kanałów przetwornika został wykorzystany do pomiarów napięcia z kolektorów czujników odbiciowych KTIR0711S. Znajdują się one na wysuniętej z przodu płytce PCB, umiejscowione symetrycznie po obu stronach. Sygnały między płytkami przekazywane są przy pomocy taśmy i złącz FFC. Timer 1 wykorzystałem do generowania dwóch sygnałów PWM sterujących prędkością każdego z silników. Doprowadzone są one do sterownika silników TB6612FNG, który jest układem z dwoma klasycznymi mostkami H. Do wejść UARTu mikrokontrolera poprowadzone są ścieżki ze złącza goldpin, do którego podłączony jest moduł bluetooth HC-05. Wraz z UART wykorzystuje go do komunikacji między robotem a telefonem lub komputerem. Na głównej płytce znajduje się także 6 - pinowe złącze ISP służące do programowania mikrokontrolera oraz przycisk który można dowolnie zaprogramować (ja używam go do ręcznego startowania/zatrzymywania robota). Dodatkowo na głównej płytce PCB umieściłem 8 LEDów prezentujących wskazania poszczególnych czujników odbiciowych. Całość została zaprojektowana przy użyciu oprogramowania Altium Designer. Obie płytki PCB są jednostronne i rozstawienie wszystkich elementów wraz z ich połączeniem było ogromnym wyzwaniem, co jednak udało się osiągnąć (ostatecznie skorzystałem z tylko jednej "przelotki"). Na płytce z czujnikami widoczne są przeróbki w postaci dolutowanych przewodów - jest to efekt złego zaprojektowania płytki i pośpiechu w przygotowaniach do zawodów... Program Do sterowania robotem zaimplementowałem regulator PD. Wartością zadaną jest w tym przypadku położenie czarnej linii względem robota, a sterowaniem wartości wypełnienia sygnału PWM dla poszczególnych silników. Uchyb wyliczany jest na podstawie pomiarów napięcia na kolektorach poszczególnych czujników odbiciowych. Gdy napięcie przekroczy pewną wartość graniczną, przy której uznajemy, że pod czujnikiem znajduje się już czarna linia do uchybu dodawana jest konkretna wartość błędu. Każdy czujnik ma przypisaną swoją "wagę" i przy każdej iteracji regulatora wyznaczany jest średni błąd, a następnie uchyb i sterowanie. Do regulatora PD dorzuciłem pewne wyjątki, które obsługują takie przypadki jak np. zgubienie linii tak, by robot potrafił na nią z powrotem trafić. Mogę tutaj polecić artykuł "Algorytm linefollowera w C – dla początkujących i nie tylko" , który całkiem dobrze opisuje jak zaimplementować regulator pd do robota typu linefollower. Do zmiany ustawień robota, w tym nastaw regulatora przygotowałem aplikację przy pomocy narzędzia MIT App Inventor. Dobrze jego obsługę prezentuje artykuł: "Tworzenie aplikacji Android". Do komunikacji przygotowałem swój własny protokół o określonej ramce danych. Wprowadzanie danych i naciśnięcie odpowiedniego przycisku powoduje wysłanie wiadomości o konkretnej budowie i zawartości do mikrokontrolera, który ją przetwarza i zmienia wartości odpowiednich parametrów. Przemyślenia Już zaprojektowałem nową płytkę czujników, tym razem mam nadzieję że poprawnie. Teraz będą ustawione zdecydowanie bliżej siebie, ponieważ chcę żeby robot szybciej mógł reagować na zmiany trasy. W przyszłym projekcie na pewno skorzystam już z płytek dwustronnych, co pozwoli na gęstsze upakowanie elektroniki, a co za tym idzie zmniejszenie gabarytów i masy robota. A mniejsza masa = lepsze osiągi. Plus brak problemów z połączeniem wszystkich komponentów. Dostrzegłem także, że kluczową sprawą jest przyczepność mechaniczna - nawet gdy silniki mają duży moment i prędkość obrotową bez przyczepności nie przekłada się to na lepsze wyniki. Dlatego planuję w przyszłości wykorzystanie opon mini-z lub odlewanych z silikonu. Na pewno dojdzie także wykorzystanie enkoderów do pomiarów prędkości obrotowych silników i implementacja regualtorów PID dla silników. Pozwoli to na płynną regulację prędkościami i w konsekwencji mniejszą ilością uślizgów kół. Myślę także o ulepszeniu regulatora dla całego robota, sprawdzeniu kilku ciekawych rozwiązań. To już koniec! Jeżeli masz pytania lub zainteresował Ciebie jakiś temat poruszony w tym wpisie to daj mi znać w komentarzu! Powodzenia przy tworzeniu nowych konstrukcji!
  2. Mr_Wind

    Cukiereczek

    Konstrukcja robi ogromne wrażenie, gratulacje! Mam pytanie dlaczego zdecydowałeś się na trzy oddzielne układy LDO 3.3V?
×