Skocz do zawartości

Mariann

Użytkownicy
  • Zawartość

    6
  • Rejestracja

  • Ostatnio

  • Wygrane dni

    1

Mariann wygrał w ostatnim dniu 24 lipca 2015

Mariann ma najbardziej lubianą zawartość!

Reputacja

13 Dobra

O Mariann

  • Ranga
    2/10

Informacje

  • Płeć
    Mężczyzna

Ostatnio na profilu byli

147 wyświetleń profilu
  1. Przekierowanie powietrza to był jeden z planów awaryjnych. Przegrzewały się w prototypach, gdzie były umieszczone na dwu warstwowym PCB o znacznie mniejszej powierzchni miedzi. Tutaj dodatkowo VIA, którymi są połączone 4 warstwy nie są zaślepione przez co dzięki różnicy ciśnień nad i pod robotem miedź jest pięknie wentylowana a końcówka mocy nie robi się nawet ciepła po pracy
  2. Cześć, od kiedy opisałem swojego robota Pika na forum, minęło już troszkę. W tym czasie zdążyło powstać kilka kolejnych konstrukcji, zarówno bez turbiny jak i z turbiną. W tym poście chciałbym przybliżyć Wam moją najnowszą konstrukcję - robota klasy Linefollower Turbo o nazwie Spark. Głównym założeniem, jakie przyświecało mi podczas projektowania była chęć nauczenia się wektorowego sterowania silnikami BLDC oraz wykorzystanie właśnie takich silników jako napęd bezpośredni w robocie. Podczas opisu założeń konstrukcyjnych posłużę się modelem 3D robota. Jak można zauważyć na powyższym zdjęciu, ogólna konstrukcja nie różni się od znanego wszystkim standardu. Na przedzie delikatna i lekka listewka z 14 czujnikami linii KTIR0711S. Centralnie umieszczona turbina QX-Motor 14000 kv o średnicy 30 mm. Dwa silniki hexTronik 1300KV umieszczone w tylnej części w taki sposób, aby możliwe było uniesienie przodu celem wjazdu na pochylnię/rampę w kategorii Linefollower Enchanced. Sercem robota jest mikrokontroler STM32H743VIT6. Jest on oparty na rdzeniu Cortex M7 oraz taktowany z prędkością 400 MHz. Wybór tak potężnej jednostki sterującej podyktowany był chęcią wydajnego obliczania komutacji sterowania wektorowego dla każdego z silników jezdnych oraz realizacji algorytmu jazdy przy pomocy tylko jednej jednostki. Dodatkowo tak szybki mikrokontroler pozwolił na zatuszowanie moich niedoskonałości w optymalizacji kodu Głównym elementem konstrukcyjnym jest 4-warstwowy obwód drukowany. W trakcie projektowania falowników do sterowania silnikami powstały dwa prototypy, w których miałem problem z przegrzewającymi się tranzystorami dlatego w docelowym PCB zastosowałem aż 4 warstwy. Dodatkową zaletą takiego obwodu jest jego większa odporność na zakłócenia elektromagnetyczne. Podświetlony obszar to miedź na wszystkich czterech warstwach połączonych setkami przelotek chłodząca tranzystory. Do sterowania każdym z silników wykorzystałem 6 tranzystorów w układzie pełnego mostka 3-fazowego. Posłużyły mi do tego półmostkowe układy BSG0813NDI za których udostępnienie serdecznie dziękuję firmie Infineon (oraz za tranzystory i drivery, które spaliłem w prototypach - ok 60 sztuk, nie od razu Rzym zbudowano ) Ostatecznie jako drivery wykorzystane zostały układy MIC4607-2 ze względu na możliwość sterowania całym mostkiem przy pomocy tylko jednego układu. Do odczytywania pozycji wirnika służy enkoder magnetyczny AMS5045B. Całość zasila akumulator Li-Po Tattu 450mAh 7.4V 75C. Za komunikację bezprzewodową odpowiada stary dobry moduł HC05. W celu zapewnienia pod robotem podciśnienia wywoływanego turbiną, zwiększającego nacisk kół na podłoże obrys uszczelniony został wydrukowaną w 3D ścianą. Do usztywnienia konstrukcji tak, aby opierała się ona o podłoże tylko kołami i ślizgaczami z przodu, posłużyły wałki węglowe o średnicy 4 mm. Do połączenia ze sobą poszczególnych elementów konstrukcyjnych wykorzystane zostały aluminiowe mocowania wykonane w technologii WEDM. Poniżej kilka fotek. Prototyp 1: Ratowanie prototypu 1 (rezystory bramkowe? A na co to potrzebne ) : Prototyp 2: Elementy konstrukcyjne: Pierwsze ruchy silnika: Poszukiwanie granic: Opona wykonana z poliuretanu 20': Aluminiowa felga wciśnięta na wirnik (Pololki dla skali): Zamontowana felga wraz z oponami (Mini-Z 20'): Turbina po dezintegracji (podczas jazdy eksplodowała): Przejazd w konkurencji Linefollower Drag podczas Bałtyckich Bitw Robotów 2018: Próby podczas RobotChallenge 2018 w Pekinie: Wnioski: Konstrukcja waży 250 g. To zdecydowanie za dużo, gdyż opony nie są w stanie zapewnić wystarczającej przyczepności na zakrętach i robot wpada w poślizg na zakrętach przez co osiągnięcie prędkości średniej na krętej trasie powyżej 3 m/s jest bardzo trudne. Zastosowanie silników BLDC jako direct-drive umożliwia rozpędzenie robota do ogromnych prędkości liniowych (15 m/s+) lecz aby posiadały one zadowalający moment przy niskich obrotach konieczny do gwałtownych zwrotów muszą być duże i ciężkie. Lepiej zastosować małe silniki z przekładnią. Nowa konstrukcja już się tworzy! Dziękuję za przejrzenie albumu, który utworzyłem i zapraszam do zadawania pytań w komentarzach
  3. Dokładnie tak, jak napisał Chumanista. Próg dla komparatorów ustalany jest przy pomocy potencjometru - pozwala to na bardzo szybkie dostrojenie odczytów z czujników do warunków oświetleniowych panujących na trasie bez podłączania robota do komputera.
  4. Cześć Dokładnie, termotransfer - użyłem nieco podrasowanego laminatora i trawienie w kuwetce z dość częstym mieszaniem. Komparatory to LM339. Z programem na początku zabawy dużo pomógł mi, jak już pisałem - Hudyvolt. Później przez bity rok go wałkowałem i ciężko mi powiedzieć na ile różni się od pierwowzoru. W międzyczasie przeczytałem chyba pół internetu na ten temat Wprowadzanie nastaw odbywa się po każdym uruchomieniu robota - po resecie wczytywane są wartości domyślne, a po odebraniu bitu o kreślonej wartości zmienia odpowiednie wzmocnienie lub prędkość o zadany skok i od razu odsyła aktualnie nastawione wartości. Dodatkowo przydaje się to do zatrzymywania uciekającego robota
  5. Witam! Na wstępie chciałbym podziękować użytkownikowi Hudyvolt, który zaraził mnie zamiłowaniem do robotyki oraz "za rękę" przeprowadził przez budowę pierwszej konstrukcji - Dziękuję! Chciałbym Wam przedstawić Pikę - mojego trzeciego i zarazem najmłodszego robota kategorii LF standard. Jest to udoskonalona wersja mojego poprzedniego flagowca - Dzidy, z którą udało mi się odnieść pierwsze zwycięstwo na zawodach. Konstrukcja mechaniczna Na budowę robota składają się standardowo 2 płytki PCB (homemade) - płyta główna stanowiąca jednocześnie podwozie robota oraz listewka z czujnikami. Spójność robota zapewnia pojedyncza listewka z włókna węglowego. Aluminiowe felgi zostały wykonane przeze mnie w technologii WEDM, opony natomiast zostały odlane z poliuretanu 30'. Jako ślizgacz zapobiegający unoszeniu się przodu robota podczas nagłych przyspieszeń zastosowałem kondensator ceramiczny - znakomita odporność na ścieranie! Z kolei przód opiera się na 2 spiłowanych koralikach, które znalazłem gdzieś w domu. Napęd 2x Silnik Pololu HP 10:1 - spisują się rewelacyjnie. Elektronika Za realizację programu odpowiada uC ATmega128, do której za pośrednictwem komparatorów analogowych podłączonych jest 14 czujników KTIR. Stan każdego z czujników wyświetlany jest na dedykowanej do tego diodzie LED. Pozwala mi to na błyskawiczną diagnozę poprawności odczytów - kilka razy uratowało mnie to przed żmudnym poszukiwaniem przyczyny dziwnego zachowania robota. Zdarzało się, że czujniki ulegały delikatnemu uszkodzeniu, mianowicie podawały fałszywy stan jedynie w przypadku delikatnego uderzenia co powodowało zamruganie diody wskazującej na wadliwy czujnik. Sterowanie silnikami odbywa się przy pomocy pojedynczego, dwukanałowego mostka H - Toshiba TB6612FNG. Na pokładzie znajduje się również moduł Bluetooh HC-05, który komunikuje się z uC poprzez interfejs UART. Do wysyłania i odbierania danych używam prostego a zarazem sprytnego terminala na androida - "Bluetooth spp pro". Zasilanie Energię, zależnie od charakteru trasy, dostarczają pakiety Li-Pol 7.4V firmy Dualsky o pojemnościach: 220mAh, 300mAh oraz 550mAh. Najczęściej stosuję akumulator o pojemności 300mAh - mam wrażenie, że robot jeździ na nim nieco szybciej, taki złoty środek pomiędzy masą a wydajnością. Stan naładowania pakietu jest ciągle wyświetlany na 3 diodach LED. Lekkiej modyfikacji poddałem również gniazdo zasilania w robocie - wiszące na oryginalnych przewodach często powodowało mi zwarcia przy samej PCB - przewody od ciągłych zmian pakietów ulegały przełamaniu. Wykorzystałem fabryczne gniazdo, które po delikatnym przycięciu wkleiłem na 2 delikatnie odchudzone goldpiny. Z tym rozwiązaniem nie miałem jeszcze żadnych problemów. Do zasilania części cyfrowej Piki zastosowałem tradycyjny stabilizator 5V, który przy tej ilości diod wyraźnie się grzeje, lecz jeszcze w granicach rozsądku Program Algorytm napisany został w języku C. Opiera się na regulatorze PD z kilkoma pomniejszymi modyfikacjami. Nowa regulacja obliczana jest z interwałami ok. 8ms. Do wprowadzania nastaw, jak już wcześniej wspominałem służy moduł Bluetooth - szalenie wygodne rozwiązanie. Osiągnięcia -I miejsce na zawodach CYBERBOT 2015 w kategorii LineFollower Standard -I miejsce na zawodach ROBO~motion 2015 w kategorii LineFollower Standard (Vmax= 2.70m/s, Vśr = 1.90 m/s) -I miejsce na zawodach Copernicus Robots Tournament 2015 w kategorii Linefollower -I miejsce na zawodach "Opolski Festiwal Robotów" w kategorii Balluf LineFollower -I miejsce na zawodach "Trójmiejski Turniej Robotów 2015" w kategorii Linefollower Standard -IV miejsce w turnieju ROBOXY 2015 w kategorii LineFollower
×
×
  • Utwórz nowe...