Skocz do zawartości

Przeszukaj forum

Pokazywanie wyników dla tagów 'Python'.

  • Szukaj wg tagów

    Wpisz tagi, oddzielając przecinkami.
  • Szukaj wg autora

Typ zawartości


Kategorie forum

  • Elektronika i programowanie
    • Elektronika
    • Arduino i ESP
    • Mikrokontrolery
    • Raspberry Pi
    • Inne komputery jednopłytkowe
    • Układy programowalne
    • Programowanie
    • Zasilanie
  • Artykuły, projekty, DIY
    • Artykuły redakcji (blog)
    • Artykuły użytkowników
    • Projekty - roboty
    • Projekty - DIY
    • Projekty - DIY (początkujący)
    • Projekty - w budowie (worklogi)
    • Wiadomości
  • Pozostałe
    • Oprogramowanie CAD
    • Druk 3D
    • Napędy
    • Mechanika
    • Zawody/Konkursy/Wydarzenia
    • Sprzedam/Kupię/Zamienię/Praca
    • Inne
  • Ogólne
    • Ogłoszenia organizacyjne
    • Dyskusje o FORBOT.pl
    • Na luzie
    • Kosz

Szukaj wyników w...

Znajdź wyniki, które zawierają...


Data utworzenia

  • Rozpocznij

    Koniec


Ostatnia aktualizacja

  • Rozpocznij

    Koniec


Filtruj po ilości...

Data dołączenia

  • Rozpocznij

    Koniec


Grupa


Znaleziono 10 wyników

  1. Witam, skończyłem podstawy elektroniki część pierwsza, teraz miałem zamiar nauczyć się podstaw Pythona i zacząć z kursem Raspberry Pi (dodam tylko, że wcześniej programowałem ok. 4 miesiące w C++ i skończyłem kursy pana Mirosława Zelenta) lecz natrafiłem na pewien problem, który ogranicza możliwość dalszego rozwijania się, problem ten związany jest z wybieraniem Interpretera mianowicie w momencie kiedy ręcznie dodaję interpreter wyskakuje mi błąd "Permission denied". Proszę o pomoc, ponieważ nie chciałbym, żeby jakieś środowisko pracy stanowiło dla mnie przeszkodę w rozwijaniu się. (Dodam również, że mam 16 lat i jestem bardzo zmobilizowany do nauki programowania). Z góry dziękuje za wszelką pomoc. Poniżej zamieszczam screeny:
  2. Cześć! Zastanawiam się jakich programów używacie do pisania skryptów w Python. Jak wiadomo, język ten jest ekstremalnie wrażliwy na wszelkie białe znaki, więc dobry edytor to podstawa. Obecnie używam domyślnego Thonny Python IDE, lecz chciałbym mieć auto-uzupełnienie/podgląd do obiektów i metod. Zainstalowałem PyCharm, lecz nie do końca rozumiem dlaczego nie mogę importować bibliotek potrzebnych do mojego programu - unable to import module. Fajnie jakbyście podzielili się czego Wy używacie.
  3. Hej! W tym artykule postaram się pokazać krok po kroku jak przygotować lampkę sterowaną mową, wykorzystując aplikację Wroob na smartfonie oraz Arduino. Czym jest projekt Wroob pisałem tutaj: Wroob - Czyli jak zaprogramować swój telefon Projekt może wymagać podstawowej wiedzy z języka Python i minimalnej znajomości systemu Wroob. Zachęcam do wcześniejszego zapoznania się z poprzednim artykułem. Można też skorzystać z kursów na naszym kanale YouTube - tłumaczymy tam jak zrealizować inne ciekawe projekty. Własny moduł na Arduino Najpierw zacznijmy od sprzętu, ja podłączyłem swoją płytkę Arduino UNO z modułem przekaźników, a do tego oprawkę żarówki podłączoną do gniazda sieciowego. Sposób podłączenia widoczny jest na obrazku poniżej. Pamiętajcie, aby zachować szczególną ostrożność pracując z napięciem sieciowym. Podobny efekt można otrzymać podłączając diodę LED do Arduino, nie wymaga to przekaźnika i jest znacznie bezpieczniejsze. W dalszej części artykułu nie będzie miało znaczenia, z której opcji korzystacie. Następnie musimy zmienić nasze Arduino w moduł systemu Wroob. Wykorzystamy do tego celu bibliotekę dostępną pod adresem https://github.com/wroob-io/arduino-wroobimp. Można ją też pobrać za pomocą managera bibliotek w Arduino IDE Biblioteka arduino-wroobimp posiada przykładowy program z którego będziemy korzystać: WroobImpGpio.ino. Znajdziecie go w Arduino IDE -> File -> Examples -> WroobImp -> WroobImpGpio. W programie WroobImpGpio inicjalizujemy pin 13 jako wyjście, a 14 jako wyjście. Jak pamiętacie, naszą lampę mamy podłączoną do pinu 13. #define PIN_OUT 13 #define PIN_IN 14 // initialize used GPIOs pinMode(PIN_OUT, OUTPUT); pinMode(PIN_IN, INPUT); Następnie uruchamiany jest protokół systemu Wroob. We Wroob moduły rozmawiają za pomocą komend w formacie JSON. Reszta kodu związana jest przede wszystkim z obsługą protokołu komunikacyjnego. // initialize Wroob protocol wroob.begin(my_callback); Jeżeli ktoś jest zainteresowany jak przebiega komunikacja między modułami w systemie Wroob można użyć programu com_imp_sniffer.py aby “podsłuchać” komunikacje między modułami. Program można znaleźć w Panelu Użytkownika Wroob w katalogu examples\hardware_projects. Jak jesteście ciekawi, chętnie opiszę protokół w osobnym poście. Program WroobImpGpio realizuje dwie funkcje ustawia oraz odczytuje wartość pinów za pomocą komend “SetPin” oraz “GetPin”. Ustawia stan na pinie 13 gdy otrzyma komendę “SetPin” lub odczytuje stan z pinu 14 gdy otrzyma komendę “GetPin”. Na tym etapie możemy uruchomić aplikację w Wroob na telefonie i przejść do panelu użytkownika w którym będziemy wykonywać resztę pracy. Jeśli nie wiesz jak to zrobić obejrzyj film Szybki start z systemem Wroob. Po podłączeniu modułu do telefonu w zakładce “Moduły” Panelu Użytkownika Wroob pojawi się jego graficzny widget. Do dalszej pracy potrzebujemy nazwy modułu w systemie. Nazwa widoczna jest w górnej części widgetu, w moim przypadku to 'eam001'. Początkowa nazwa nadawana jest automatycznie, składa się z typu modułu oraz kolejnych liczb. Możecie również ustawić własną nazwę, nie powinna się ona jednak powtarzać w systemie. Obsługa modułu Arduino Na początku klasę utwórzmy naszego własnego modułu, pozwoli nam to z niego korzystać w wygodny sposób w naszych programach. Najprostszą klasę modułu możemy zdefiniować w sposób przedstawiony poniżej. Korzystamy tutaj z wcześniej przygotowanej uniwersalnej klasy Module i tworzymy jedną funkcję set_pin() do obsługi komendy “SetPin” from wroob.modules.module import Module class Eam(Module): def __init__(self, moduleName): super(Eam, self).__init__(moduleName) #set_pin wysyła komendę "set_pin" do naszego modułu def set_pin(self, value): params = {"value":value} self._send_cmd('SetPin', params) W przypadku programu WroobImpGpio wgranego na Arduino można też skorzystać z wcześniej przygotowanej klasy Eam. Znajdziecie ją w katalogu examples\hardware_projects\example_arduino_module. Program korzystający z naszej klasy wygląda następująco: from eam import Eam #import klasy Eam z pliku eam from time import sleep eam = Eam ("eam001") #stworzenie obiektu eam powiązanego z modułem o nazwie “eam001” while(True): sleep(1) eam.set_pin(1) #użycie metody set_pin() sleep(1) eam.set_pin(0) Do konstruktora klasy Eam przekazujemy nazwę naszego modułu 'eam001' tworząc jego obiekt. Dzięki temu w programie możemy korzystać w prosty sposób z funkcji naszego modułu przez odwołanie jego do obiektu. Program jest czytelny i łatwy do rozbudowania. Sterowanie mową Kolejny etap to już czysta przyjemność. Wykorzystamy moduł rozpoznawania mowy (SRM) aby sterować naszą lampą. Aby go uruchomić należy przejść do zakładki “Moduły” a następnie wybrać z listy “Moduły w Panelu Użytkownika”. Moduł SRM wymaga mikrofonu podłączonego do komputera. W kolejnym etapie możemy rozbudować program korzystający z naszego nowo utworzonego modułu na Arduino o funkcje modułu SRM from eam import Eam from wroob.modules.srm import Srm #import klasy modułu Srm from time import sleep eam = Eam("eam001") srm = Srm("srm001") def srm_callback(speech): #funkcja reagująca na rozpoznaną mowę print(speech) if "zapal światło" in speech: eam .set_pin(0) elif "zgaś światło" in speech: eam .set_pin(1) srm.start_speech_reporting(srm_callback) #rozpoczęcie rozpoznawania mowy while(True): sleep(60) Efekt prezentuje się następująco: Więcej na temat rozpoznawania mowy i możliwości modułu SRM można się dowiedzieć na naszym kursie video Chatbot. Jeżeli ktoś nie chce przechodzić całego procesu, gotowe programy można znaleźć w zaktualizowanej właśnie aplikacji w folderze examples\hardware_projects\example_arduino_module Bez wprowadzania zmian w kodzie Arduino wszystko od razu powinno działać
  4. Cześć. Robię projekt rozpoznawania jednego z kilku ruchów za pomocą akcelerometru, żyroskopu, STM32F467ZG i pakietu X-CUBE-AI. Opieram się na artykule @Elvis Sztuczna inteligencja na STM32, czyli przykład użycia X-CUBE-AI, ale mam kłopot z jego rozszerzeniem. Próbowałem różnych sposobów, ale nie mogę zrobić sieci, która zamiast wartości binarnej (ruch - brak ruchu) zwróci mi prawdopodobieństwa każdego z 6 wyjść (na razie chciałbym tyle różnych ruchów rozpoznawać). Mam książkę, którą poleca Elvis ("Deep Learning" autorstwa Chollet'a), ale brak doświadczenia z SSN, czy nawet językiem Python mocno mnie ogranicza. Chciałbym też, żeby zamiast jednego wejścia będącego prostą funkcją odczytów z czujników (suma kwadratów odczytów z akcelerometru), f = open('data1.csv','r') values = [] results = [] for line in f: fields = line.strip().split(',') if len(fields) == 4: x = float(fields[0]) y = float(fields[1]) z = float(fields[2]) values.append([math.sqrt(x**2 + y**2 + z**2)]) results.append(float(fields[3])) f.close() układ bezpośrednio korzystał ze wszystkich 6 (3ACC i 3 GYRO). Tutaj fragment kodu Elvisa z STM'a: void MX_X_CUBE_AI_Process(void) { /* USER CODE BEGIN 1 */ float nn_input[AI_FORBOT_AI_IN_1_SIZE]; float nn_output[AI_FORBOT_AI_OUT_1_SIZE]; aiRun(nn_input, nn_output); /* USER CODE END 1 */ } static uint32_t next_ms = 1000; static float nn_input[AI_FORBOT_AI_IN_1_SIZE]; float nn_output[AI_FORBOT_AI_OUT_1_SIZE]; while (HAL_GetTick() < next_ms) {} next_ms += READ_DELAY_MS; lsm6_value_t acc; acc = lsm6_read_acc(); for (int i = 0; i < AI_FORBOT_AI_IN_1_SIZE - 1; i++) nn_input[i] = nn_input[i + 1]; nn_input[AI_FORBOT_AI_IN_1_SIZE - 1] = sqrt(acc.x * acc.x + acc.y * acc.y + acc.z * acc.z); aiRun(nn_input, nn_output); if (nn_output[0] >= 0.5f) HAL_GPIO_WritePin(LED2_GPIO_Port, LED2_Pin, GPIO_PIN_RESET); else HAL_GPIO_WritePin(LED2_GPIO_Port, LED2_Pin, GPIO_PIN_SET); Pomożecie mi zmienić kod Python'a i STM'a, bym mógł go użyć do swoich potrzeb? Naprawdę długo szukałem sposobu i próbowałem wielu rozwiązań, ale albo nie działa mi sieć neuronowa, albo nie kompiluje się projekt w SW4STM32.
  5. Witam. mam taki kod, do uzyskiwania video, jak nałożyć białą maskę żeby tylko widzieć to co jest w niebieskiej ramce import cv2 cap = cv2.VideoCapture(0) cap.set(3,640) cap.set(4,380) while(1): _, frame = cap.read() cut = cv2,rectangle(frame, (220, 200), (450, 400), (255,0,0), 2) cv2.imshow('cut', cut) k = cv2.waitKey(5) & 0xFF if k == 27: break cv2.destroyAllWindows() Wielkie dzięki, pewnie dla was banalne, ja nie mogę znaleźć odpowiedzi.
  6. Cześć, po ponad półrocznej przerwie kontynuuje zmagania z z kamerką OV7675 z użyciem płytki Nucleo z stm32f446RE. DCMI ani DMA jeszcze nie udało mi się uruchomić ale na swój AVR'owy sposób jestem w stanie UARTem (baud 2M) przesłać w grayscale wartości pixeli z stm32 do apki w Python na moim PC. Po wygenerowaniu obraz jest akceptowalny, ale daleko mu do tego co widziałem na youtube, gdzie obraz nie dość że był czysty to jeszcze przsyłany na żywo( u mnie wygenerowanie zdjęcia przy 5 sekundach to jest dość szybko ^^). Problem wygląda tak: przesyłane dane a dokładniej linijki ( pixele przesyłam rzędami: [dane][index linijki] ) są często zlepkiem dwóch linijek, przez to rozmiar linijki często jest dwukrotnie większy niż to jest dla prawidłowego pakietu. Wydaje mi się że problem jest po stronie Pythona/Windowsa, który nie radzi sobie z taką ilością danych i gdy się gubi to skleja mi pakiety, chociaż dokumentacja PySerial mówi o obsłudze jeszcze większych baudrate. Podczas przeszukiwania internetu natknąłem się też na informacje że czasem taktowanie kamerki zegarem z MCU może powodować problemy i potrzebne jest ustawianie rejestrów w kamerce w celu przeskalowania zegara co powoduje jej poprawne działanie. Może miał ktoś podobny problem? Co myślicie?
  7. Python to język wysokopoziomowy, który ma bardzo szerokie zastosowanie. Można w nim napisać grę (PyGame) albo zrobić komunikację mikrokontrolera z programem na komputerze/laptopie (PySerial), aby na przykład wysyłać komendy. W tym kursie zajmiemy się tą drugą biblioteką. W starszych komputerach istnieją porty szeregowe RS-232. W nowszych komputerach portu tego raczej się nie uraczy. Ten wpis brał udział konkursie na najlepszy artykuł o elektronice lub programowaniu. Sprawdź wyniki oraz listę wszystkich prac » Partnerem tej edycji konkursu (marzec 2020) był popularny producent obwodów drukowanych, firma PCBWay. Jest jednakże światełko w tym ciemnym tunelu, gdyż sterowniki niektórych urządzeń USB emulują port szeregowy COM umożliwiając tym samym proste komunikowanie się z takim urządzeniem na nowszych maszynach. Do takich urządzeń należą płytki rozwojowe Arduino RS-232(rys. 1) Prosta komunikacja pomiędzy uC (mikrokontrolerem) a PC (rys. 2) 1.Wysyłanie informacji z mikrokontrolera do komputera/laptopa. Konfiguracja połączenia z portem COM Zanim zacznie się przygodę z komunikacją za pośrednictwem portu COM konieczne jest zapoznanie się z podstawami jego działania. Port ten przesyła dane dwukierunkowo za pomocą jednego pinu przesyłającego i jednego odczytującego dane. Dane przesyłane są zawsze z określoną prędkością mierzoną w bitach na sekundę. Standardowe ustawienie prędkości transmisji z urządzeniem wynosi 9600 bitów na sekundę. Ważne aby, wysyłać i odbierać dane z taką samą częstotliwością w przeciwnym przypadku dane nie będą odbierane przez urządzenie w sposób poprawny jak również program nie będzie w stanie poprawnie odbierać danych. Przy podstawowej konfiguracji konieczne jest również posiadanie wiedzy o nazwie portu. Pod Windowsem nazwy portów zaczynają się od COM i kończą liczbą określającą numer portu. Można sprawdzić w systemie, jakie porty COM są dostępne w Menadżerze urządzeń co też i widać na poniższym rysunku (rys. 3) rys. 3 Przygotowanie środowiska na komputerze/laptopie Tak jak już mówiłem, będziemy potrzebować biblioteki PySerial omówię jej instalację w środowisku PyCharm: Wchodzimy w terminal, następnie wpisujemy: "pip install pyserial" Naciskamy enter Powinniśmy zobaczyć coś takiego (rys. 4) rys. 4 teraz przejdzmy do Arduino. Przygotowywanie Arduino (oczywiście zadziała komunikacja zadziała wszędzie gdzie użyjemy UART'a, nie tylko Arduino) Na razie jedyne co napiszemy to: void setup() { Serial.begin(9600); // Ustawienie Baud Rate(prędkość transmisji) na 9600Hz } void loop() { Serial.println("Proba Komunikacji"); delay(1000); } Wgrywamy nasz program, uruchamiamy Monitor Portu Szeregowego gdzie powinno sie pojawić się (rys. 5) rys. 5 i tak co około sekundę (przy okazji widzimy, że funkcja delay nie jest taka dokładna (dlatego nie stosuje sie jej gdy robimy na przykład zegar)) Teraz można przejść do PyCharma import serial arduino = serial.Serial('COM5', 9600, timeout=0.1) while True: data = arduino.readline() if data: data = data.decode() print(data) Można powiedzieć, że właśnie zrobiliśmy monitor portu szeregowego z ArduinoIDE Omówienie kodu: Importujemy bibliotekę, Ustawiamy port do któego mamy podłączone Arduino oraz Baud Rate, Przypisujemy do zmiennej to co aktualnie jest przesyłane, Jeżeli zmienna nie jest pusta to ją dekodujemy i wyświetlamy na ekranie. ZAWSZE MUSIMY PAMIĘTAĆ O ZDEKODOWANIU (tylko na komputerze)!!! Wyłączamy monitor portu szeregowego (ten z ArduinoIDE), kompilujemy program i naszym oczom powinno ukazać się (rys. 6) rys. 6 2. Wysyłanie komend z komputera/laptopa do mikrokontrolera. Przejdźmy do PyCharma import serial import time arduino = serial.Serial('COM5', 9600, timeout=0.01) while True: arduino.write('wlacz'.encode()) time.sleep(1) arduino.write('wylacz'.encode()) time.sleep(1) Importujemy bibliotekę time (nie trzeba jej instalować) oraz wysyłamy "wiadomości": "wlacz" oraz "wylacz" To by było na tyle w PyCharmie, przejdźmy więc do ArduinoIDE rys. 7 Jako że robimy komunikację używając UART'a, który może wysyłać maksymalnie jeden znak, ponieważ (rys. 7) jeden znak to jeden bajt (bajt ma 8bitów) a my wysyłamy komendy: "wlacz" oraz "wylacz" to musimy zrobić taki mały myczek elektryczek i użyć zmiennej oraz pętli. Będzie wyglądać to tak: wysyłamy: w Arduino: "odbiera" i zapisuje do zmiennej wysyłamy: l Arduino: "odbiera" i zapisuje do zmiennej wysyłamy: a Arduino: "odbiera" i zapisuje do zmiennej wysyłamy: c Arduino: "odbiera" i zapisuje do zmiennej wysyłamy: z Arduino: "odbiera" i zapisuje do zmiennej nie wysyłamy nic Arduino: wychodzi z pętli oraz porównuje zawartość zmiennej z komendami które ma zapisane Arduino: wykonuje komendę Arduino: czyści zawartość zmiennej z komendą Takie wybrnięcie z sytuacji int i = 12; //pin do którego podłączymy diodę String komenda=""; void setup() { Serial.begin(9600); pinMode(i, OUTPUT); digitalWrite(i, HIGH); } void loop() { if(Serial.available() > 0) { while(Serial.available() > 0) { komenda += char(Serial.read()); } Serial.println(komenda); if(komenda == "wlacz") { digitalWrite(i, HIGH); } if(komenda == "wylacz") { digitalWrite(i, LOW); } komenda = ""; } delay(100); } Oczywiście można wysłać do komputera/laptopa "informację zwrotną" na przykład: Dioda jest wlaczona Dioda jest wylaczona Tylko musimy pamiętać aby użyć .decode(), ale tak jak mówiłem, tylko w programie na komputrzez/laptopie Jeżeli nasze komendy będą miały tylko 1 znak na przykład: a, A, 1, B, c, C ,4 (ogólnie to dowolny znak z tabeli ASCII) nie trzeba używać pętli tylko: if(Serial.read() == 's') oczywiście też w tym ifie: if(Serial.available() > 0) Jeżeli wstawilibyśmy tam więcej znaków dostalibyśmy taki komuniukat: warning: multi-character character constant [-Wmultichar]. 3. Podsumowanie Wysyłanie oraz odbieranie informacji jest bardzo przydatne, nie musi być to tylko pomiędzy uC, a komputerem. Może to być komunikacja pomiędzy dwoma uC na przykład: karta microSD ma w sobie procesor który komunikuje sie z uC używając SPI, termometr DS18B20 który komunikuje z uC używając protokołu komunikacji OneWire (rys. 8), czujnik podczerwieni, procesor w naszych komputerach z mostkiem, pamięcią i GPU, ładowarka z telefonem, aby ustalić jaki prąd i napięcie. Komunikacja jest wszędzie (można powiedzieć, że urządzenia są bardziej komunikatywne od nas ). rys. 8
  8. Dzień Dobry Forumowicze! Problem dotyczy zarówno mikrokontrolera, jak i RPi, więc mam nadzieje że nie będzie problemu związanego z nieodpowiednim działem. Od kilku dni borykam się bezskutecznie z pewnym problemem, a prezentuje się on następująco: Potrzebuję wymienić dane poprzez SPI między Raspberry Pi Zero W (Master), a Atmegą64(Slave). Atmega zasilana przez 5V na własnoręcznie zaprojektowanej płytce (z konwerterem poziomów logicznych 3,3V-5V na MOSFET'ach). Generalnie elektrycznie wszystko jest sprawne i sprawdzone kilkukrotnie, więc to odpada. Jestem w stanie zaprogramować AVR'a przez RPi za pośrednictwem SPI właśnie (na RPi Rasbian w wersji 9), z wykorzystaniem AVRDUDE. Problem jaki się pojawia, to przy próbie wymiany danych między nimi. AVR'a programuje w C, natomiast RPi w Pythonie (kody programów niżej). Polega on na tym, że biblioteka Python'a SpiDev, jako sygnał ChipSelect podaje stan wysoki, podczas gdy ATMEGA wymaga podczas tej komunikacji stanu niskiego. Atmega nie posiada możliwości zmiany trybu na taki, aby czytała stan wysoki, a biblioteka SpiDev z kolei, nie ma funkcjonalności podania stanu niskiego. Chciałem to obejść poprzez podpięcie nóżki Atmegi pod zupełnie inną nóżkę RPi i ręcznego wysterowywania tej nóżki przed nadaniem paczki danych, jednak to nie działa - nie wiem jednak dlaczego. Nie używałem nigdy wcześniej SPI, więc finalnie nie jestem nawet pewien gdzie leży problem - czy w kodzie Slav'a, Mastera czy zupełnie gdzie indziej. Slave (C, Amtega64): #define F_CPU 1000000UL #include<avr/io.h> #include<util/delay.h> #include<avr/interrupt.h> #define ustaw(bajt, nr_bitu) (bajt |=(1<<nr_bitu)) #define skasuj(bajt, nr_bitu) (bajt &=~(1<<nr_bitu)) #define sprawdz(bajt, nr_bitu) ((bajt &(1<<nr_bitu))&&1) #define sleep(czas) for (int i=0; i<(czas); i++) _delay_ms(1) int data=500; void init_spi(void) { DDRB=(1<<PB3); //MISO - output SPCR=(1<<SPE)|(1<<SPIE); //SPI_ON & Interrupt SPDR=0; } uint8_t rec_spi(void) { while (!(SPSR & (1<<SPIF))) ; return SPDR; //return data register } int main(void) { sei(); init_spi(); DDRC |=1<<PC3; //LED'y DDRC |=1<<PC4; DDRC |=1<<PC5; while (1) { ustaw(PORTC, PC4); sleep(data); skasuj(PORTC, PC4); sleep(data); } } ISR (SPI_STC_vect) { data = rec_spi(); ustaw(PORTC,PC5); } Master (Python, RPi): import RPi.GPIO as GPIO import spidev import time GPIO.setmode(GPIO.BCM) GPIO.setup(7, GPIO.OUT) GPIO.output(7, GPIO.HIGH) spi = spidev.SpiDev() spi.open(0, 0) print('Open SPI') #GPIO.output(7, GPIO.LOW) data = 0xAA try: while True: print('Sending..') GPIO.output(7, GPIO.LOW) spi.xfer([data], 50000, 100, 8) # spi.writebytes([250]) GPIO.output(7, GPIO.HIGH) print('complete') time.sleep(2) #end while except KeyboardInterrupt: # sleep(0.1) spi.close() GPIO.cleanup() Na masterze (RPi) próbowałem ustawiać różne tryby (spi.mode), różne prędkości, próbowałem z spi.writebytes oraz z spi.xfer. Wszystko bez skutku. Na Atmedze, mrugam diodą co pół sekundy. Próbowałem osiągnąć taki efekt, by wysłać liczbę 250 i ustawić ją jako czas mrugania, co zauważyłbym jako szybsze mruganie diody. Próbowałem też zapalić inną diodę w przerwaniu od SPI - wszystko bezskutecznie. SPI w FuseBitach jest aktywne. Połączenia elektryczne są poprawne, przy czym Atmegowski SS jest podłączony do 7 pinu RPi. Byłbym bardzo wdzięczny za wszelką pomoc i sugestie. Pozdrawiam.
  9. Cześć wszystkim, Chciałbym przetestować pewien program który znalazłem na internecie, niestety pojawia się problem przy instalacji biblioteki na Raspberry Pi , czy ktoś jest w stanie pomóc?
  10. Cześć! Na początek powiem, że nie wiem czy wybrałem odpowiedni dział, za co przepraszam. Do rzeczy: napisałem sterownik pod pasek led WS2811 (KLIK). Potrzebowałem by raspberry podłączone do paska led i przekaźnika mogło włączać lub wyłączać pasek oraz zapalać na wybrany kolor za pomocą requestów http. Można też otrzymać stan czy pasek jest włączony i jaki kolor mamy zapalony. Jeśli ktoś by chciał użyć wystarczy uzupełnić w kodzie parametry opisane w README. Działa też pluginem dla pasków led z homebridge. Wszelki feedback, nawet ten negatywny - mile widziany https://github.com/damianchoc/led_api
×
×
  • Utwórz nowe...