Skocz do zawartości

Przeszukaj forum

Pokazywanie wyników dla tagów 'sensor'.

  • Szukaj wg tagów

    Wpisz tagi, oddzielając przecinkami.
  • Szukaj wg autora

Typ zawartości


Kategorie forum

  • Elektronika i programowanie
    • Elektronika
    • Arduino i ESP
    • Mikrokontrolery
    • Raspberry Pi
    • Inne komputery jednopłytkowe
    • Układy programowalne
    • Programowanie
    • Zasilanie
  • Artykuły, projekty, DIY
    • Artykuły redakcji (blog)
    • Artykuły użytkowników
    • Projekty - DIY
    • Projekty - DIY roboty
    • Projekty - DIY (mini)
    • Projekty - DIY (początkujący)
    • Projekty - DIY w budowie (worklogi)
    • Wiadomości
  • Pozostałe
    • Oprogramowanie CAD
    • Druk 3D
    • Napędy
    • Mechanika
    • Zawody/Konkursy/Wydarzenia
    • Sprzedam/Kupię/Zamienię/Praca
    • Inne
  • Ogólne
    • Ogłoszenia organizacyjne
    • Dyskusje o FORBOT.pl
    • Na luzie

Kategorie

  • Quizy o elektronice
  • Quizy do kursu elektroniki I
  • Quizy do kursu elektroniki II
  • Quizy do kursów Arduino
  • Quizy do kursu STM32L4
  • Quizy do pozostałych kursów

Szukaj wyników w...

Znajdź wyniki, które zawierają...


Data utworzenia

  • Rozpocznij

    Koniec


Ostatnia aktualizacja

  • Rozpocznij

    Koniec


Filtruj po ilości...

Data dołączenia

  • Rozpocznij

    Koniec


Grupa


Imię


Strona

Znaleziono 3 wyniki

  1. Stacja pogodowa GB521 pokazuje mi 20% wilgotności powietrza, gdy czujnik BME280 używany z różnymi bibliotekami pokazuje mi wartość większą o 10-15%. BME280 był kupiony na Aliexpress i obecnie mam tylko jedną jego sztukę. Nie wiem czy mógłby być az tak kiepski/wadliwy, że pokazywałby mi tak zawyżone wartości. Rozkręciłem stację pogodową w celu zobaczenia co tam za czujniki siedzą w środku. Być może one są po prostu kiepskie. Jak się domyślam - czujnik wilgotności to ten biały z literką L, a temperatury na lewo od niego. Nie posiadam żadnego innego czujnika/miernika/stacji pogodowej, aby móc porównać pomiary. Jak myślicie - czy to stacja pogodowa ma kiepski czujnik wilgotności czy może mam wadliwy BME280? // Dodam, że mieszkam w bloku dość wysoko i ogólnie jest tu dość sucho.
  2. Witam, czy ktoś wie co to za sensor? Odlutowany ze starej drukarki laserowej, ma tylko 2 piny. Jak sie na niego poświęci to generuje napięcie rzędu 0.2 - 0.3 V
  3. VibSense + VibDongle 1) Wprowadzenie Jakiś czas temu po zajęciach przeprowadzonych na politechnice dotyczących ogólnej oceny stanu technicznego maszyn i urządzeń doszedłem do wniosku, że fajnie byłoby zagłębić się bardziej w temat pomiaru drgań. Drgania mechaniczne są symptomem, który dobrze reprezentuje stan techniczny maszyny. Zazwyczaj im wyższe tym gorszy jej stan techniczny. Wykonując dodatkowe analizy np. analiza widmowa w określonym paśmie pomiarowym, można po rozkładzie widma zdecydować, który podzespół jest uszkodzony. Dlatego postanowiłem zaprojektować i wykonać prototyp urządzenia, które z założenia miało: dokonywać pomiaru drgań w paśmie minimum do 1000 Hz, umożliwić pomiar bez konieczności stosowania okablowania w okolicy maszyny (przez nieuwagę taki przewód może się wkręcić w wirnik - konsekwencje mogą być różne), montaż na magnes (maszyny zazwyczaj są wykonane ze stali więc jest to dość pewny sposób mocowania), w wypadku gdy wykorzystujemy transmisję bezprzewodową i nie mamy możliwości połączenia się z odbiornikiem z różnych powodów, zapis na pamięć wewnętrzną lub kartę pamięci, możliwość odczytywania danych z wielu czujników jednocześnie. Wedle tych założeń powstał projekt, który nazwałem VibSense - czyli po prostu czujnik drgań. Do tego pomysłu doszedł drugi, VibDongle - urządzenie do akwizycji danych z czujników VibSense. 2) VibSense Ideą, która przyświecała podczas projektowania czujnika, było możliwe zastosowanie w przemyśle oraz w zastosowaniach amatorskich. Oczywiście prototyp raczej nie mógłby zostać wdrożony w przemysł, tutaj należałoby się zastanowić nad dodatkowymi rozwiązaniami typu zmiana złącz transmisyjnych z micro USB na przemysłowe, obudowa z klasą ochronności IP65 chociażby. Temat do dalszych rozważań jest. Opisany tutaj projekt raczej jest konstrukcją hobbystyczną. Założenia projektowe: konstrukcja mobilna - małe wymiary, zasilanie z akumulatora Li-Pol komunikacja bezprzewodowa - zastosowanie komunikacji radiowej ze względu na mniejszą energochłonność modułów radiowych względem modułów WiFi chociażby, parametrem decyzyjnym był również zasięg. pomiar drgań minimum do 1 kHz (szersze pasmo mile widziane) możliwość zapisu na kartę microSD lub pamięć wewnętrzna komunikacja RS232-USB - na potrzeby bootloadera lub zwykłej przewodowej wymiany danych. minimum jeden przycisk - zawsze się przydaje, minimum jedna dioda jak najmniejsze PCB - stąd założenie obudów SMD dla większości układów oraz rozmiarów elementów SMD 0402. Na ww. założeniach oparłem całą elektronikę, która jest wykorzystywana w przypadku modułu VibSense: procesor ATmega328 - procek w sumie jeden z najprostszych i miałem akurat w szufladzie wersję SMD, wystarczająca ilość portów do tego projektu, wszystkich opcji było w sam raz, FT230XQ - układ RS232, komunikacja procesor-komputer po USB, posiada jedną z mniejszych obudów SMD i spełnia swoją funkcję, ADXL345 - trójosiowy akcelerometr cyfrowy, niski pobór prądu, magistrala SPI/I2C, pomiar do +/-16g czyli ok. 160 m/s2 w przypadku przyspieszeń drgań (w zupełności wystarczająco), maksymalna częstotliwość wysyłania danych 3200 Hz co daje pasmo pomiarowe 1600 Hz jeżeli chcemy uniknąc w minimalnym stopniu zjawiska aliasingu, 2 wyjścia przerwań, napięcie zasilania do 3V6; Czego chcieć więcej 😉 RFM73-D - komunikacja radiowa 2,4 GHz, zastosowania przemysłowe na 2,4 GHz raczej nie są dobrym pomysłem ale takie moduły akurat miałem i znam je w miarę więc wykorzystałem w projekcie slot na karty microSD - zapis na nośnik zewnętrzny, microswitch podłączony pod wejście INT procesora dwukolorowa dioda LED czerwono-zielona złącze programatora ISP - w razie bootloader by nie działał złącze micro USB zasilanie akumulatorem LiPol 3V6 o pojemności 80 mAh układ nadzorujący ładowanie akumulatora MCP73833 stabilizator napięciowy LDO na 2V8 - na takim napięciu działa całą elektronika. Płytki zostały wykonane przez JLCPCB - jakość bardzo dobra, zarówno ścieżki, jak i warstwa opisowa. Polecam producenta PCB bardzo gorąco 🙂 zdjęcia płytek po zlutowaniu zamieszczam poniżej. Pochwalę się - wszystko lutowane ręcznie przeze mnie 🙂 3) VibDongle W przypadku tego urządzenia chciałem wykonać coś co będzie zbierać dane od wszystkich czujników, które są zamontowane na maszynie. Urządzenie miało być małych rozmiarów i być podłączane jako dongle do portu USB komputera. VibDongle powstał na praktycznie takich samych komponentach jak VibSense, oczywiście bez akcelerometru, przycisku i slotu na kartę oraz z wtyczką USB. Poza tym - dokładnie to samo. 4) Schematy elektryczne Schematy elektryczne załączam poniżej. Może, któreś z rozwiązań przyda się komuś chociaż nie jest to nic zaskakującego. Wszystkie połączenia zgodne z notami katalogowymi producentów. 5) Funkcjonalność Jeśli chodzi o funkcjonalność modułów współpracujących ze sobą, założenia były następujące: praca w sieci - połączenie wielu czujników z jednym modułem odbiorczym możliwość parowania czujników z odbiornikiem wysyłanie i odbiór danych z maksymalną częstotliwością jaką daje moduł ADXL tak aby nie było opóźnień czasowych; niezbędne do przetwarzania danych w trybie semi-real time, w przypadku braku odbiornika zapis na kartę micro SD, możliwość czasowego wyzwolenia pomiaru po wciśnięciu przycisku odbiór danych przez VibDongle i wysyłka po USB, analiza danych już w aplikacji na komputerze Na razie sama funkcjonalność jest nieco ograniczona. Testowane były tylko 2 moduły VibSense współpracujące z VibDongle. Tryb software'owego parowania i przesyłania danych działa bez zarzutu - oczywiście nie obyło się bez kłopotów z elektroniką oraz problemów programowych 🙂 Do opracowania zostało jeszcze: zapis na kartę, konkretny system przesyłania danych tak aby nie zapychać kolejki przy dużej ilości czujników podłączonych do jednego VibDongle oraz aplikacja na PC do akwizycji i analizy danych. Dodatkowo można wykonać cyfrowo w programie samego czujnika całkowanie przyspieszeń drgań na prędkości drgań oraz wyliczyć wartość RMS w paśmie 10 - 1000 Hz. Dzięki temu będzie możliwa ocena ogólnego stanu technicznego maszyny wirnikowej z wykorzystaniem normy PN ISO 10816. W zdjęciach dodałem zrzut z terminala z info AT (tak, moduł obsługuje komendy AT) oraz przesłanie jednego pomiaru. 6) Obudowa Aby całości nadać jakiś kształt (na razie tylko czujnikowi) wykonałem prototyp obudowy. Prototyp został wydrukowany na drukarce 3D dzięki uprzejmości mojego znajomego oraz zamodelowany we Fusion 360. Następna sztuka będzie trochę bardziej obła, ponieważ nieco przeszkadzają mi ostre brzegi 🙂 nakrętki od spodu są przyklejone dzięki czemu możliwe jest zarówno skręcenie obudowy jak i dokręcenie magnesu do podstawy. Wymiary płytek PCB: VibSense 35 x 35 mm VibDongle (ze złączem USB) 60 x 15 mm 7) Podsumowanie Na razie całość prosta bo prosta ale spełnia swoje zadanie. Do zrobienia zostało jeszcze sporo ale na to muszę mieć trochę więcej czasu. W miarę postępów w pracach będę aktualizował temat 🙂 WA_dongle.pdf WA_sense_v1.pdf
×
×
  • Utwórz nowe...

Ważne informacje

Ta strona używa ciasteczek (cookies), dzięki którym może działać lepiej. Więcej na ten temat znajdziesz w Polityce Prywatności.