Skocz do zawartości

Przeszukaj forum

Pokazywanie wyników dla tagów 'KiCad'.

  • Szukaj wg tagów

    Wpisz tagi, oddzielając przecinkami.
  • Szukaj wg autora

Typ zawartości


Kategorie forum

  • Elektronika i programowanie
    • Elektronika
    • Arduino i ESP
    • Mikrokontrolery
    • Raspberry Pi
    • Inne komputery jednopłytkowe
    • Układy programowalne
    • Programowanie
    • Zasilanie
  • Artykuły, projekty, DIY
    • Artykuły redakcji (blog)
    • Artykuły użytkowników
    • Projekty - roboty
    • Projekty - DIY
    • Projekty - DIY (początkujący)
    • Projekty - w budowie (worklogi)
    • Wiadomości
  • Pozostałe
    • Oprogramowanie CAD
    • Druk 3D
    • Napędy
    • Mechanika
    • Zawody/Konkursy/Wydarzenia
    • Sprzedam/Kupię/Zamienię/Praca
    • Inne
  • Ogólne
    • Ogłoszenia organizacyjne
    • Dyskusje o FORBOT.pl
    • Na luzie
    • Kosz

Szukaj wyników w...

Znajdź wyniki, które zawierają...


Data utworzenia

  • Rozpocznij

    Koniec


Ostatnia aktualizacja

  • Rozpocznij

    Koniec


Filtruj po ilości...

Data dołączenia

  • Rozpocznij

    Koniec


Grupa


Znaleziono 1 wynik

  1. Idea działania Komora jonizacyjna, to urządzenie składające się z dwóch elektrod do których doprowadzane jest stałe napięcie, co powoduje powstanie pola elektrycznego w jej środku. Gdy kwant promieniowania "uderzy" w atom gazu znajdującego się w komorze, "rozbija" go na dwa jony (dodatni i ujemny), które są przyciągane do elektrod (dodatni do ujemnej i vice versa). Mierząc prąd płynący między dodatnią, a ujemną elektrodą, będzie on proporcjonalny do ilości tych jonów, zaś to będzie proporcjonalne do mierzonego promieniowania. Utrudnieniem jest, że wspomniane prądy są małe, więc wymagają dużego wzmocnienia, co zaś wymaga m.in. starannego filtrowania zasilania, oraz ekranowania, by urządzenie się nie wzbudzało. Poniżej znajduje się schemat blokowy prezentowanego rozwiązania. Część elektroniczna Pierwotnie do wytworzenia napięcia polaryzującego, miałem w planach użycie przetwornicy, jednak okazało się, że napięcie 12V z baterii jest wystarczające. Sygnał z komory trafia do wzmacniacza transimpedancyjnego, w pętli sprzężenia znajdują się szeregowo dwa rezystory o wartości aż 50G. Połączenie owych rezystorów, elektrody komory jonizacyjnej i nóżki wzmacniacza musi być wykonane w powietrzu, by uniknąć pasożytniczych rezystancji. Poniżej znajduje się render w KiCADie, oraz rzeczywiste urządzenie (wiem, fotka jest dość niskiej jakości). Część programistyczna Sygnał analogowy trafia do przetwornika ADC, i jest zbierany przez procek - tu użyłem dość mało popularnego STM8. Zaskoczeniem było dla mnie, że GCC nie obsługuje tych procesorów, zaś poświęcony im SDCC nie umie wycinać z binarki funkcji, które nie są używane! Do komunikacji z hardwarem użyłem stdperiph. Komunikacja z światem zewnętrznym jest jednokierunkowa (urządzenie wysyła pomiary co kilka sekund) za pomocą UARTa. Założeniem było, by urządzenie można było pozostawić same sobie i zdalnie je flashować, czy też pobierać z niego dane. W skrócie, wolę programować leżąc w łóżku, niż garbiąc się nad stołem pełnym kabli :) Zostało to zrealizowane przez dodanie Raspberry Pi, do której podpięty jest zarówno programator, jak i przelotka UART/USB. Soft na procka napisałem w C. Pobieranie danych po stronie maliny jest wykonywane przez skrypt w Pythonie, dane są wizualizowane skryptem w R. Użyłem R, mimo, że Python też ma biblioteki do tworzenia wykresów, bo bardzo podobają mi się wykresy w R. Dokumentacja powstała w LATEXie. Całość dostępna jest na GitHubie - zapraszam do odwiedzenia Wyniki Poniżej znajdują się dane pomiarowe zebrane za pomocą urządzenia.
×
×
  • Utwórz nowe...