Skocz do zawartości

Przeszukaj forum

Pokazywanie wyników dla tagów 'przerwania'.

  • Szukaj wg tagów

    Wpisz tagi, oddzielając przecinkami.
  • Szukaj wg autora

Typ zawartości


Kategorie forum

  • Elektronika i programowanie
    • Elektronika
    • Arduino, ESP
    • Mikrokontrolery
    • Raspberry Pi
    • Inne komputery jednopłytkowe
    • Układy programowalne
    • Programowanie
    • Zasilanie
  • Artykuły, projekty, DIY
    • Artykuły redakcji (blog)
    • Artykuły użytkowników
    • Projekty - roboty
    • Projekty - DIY
    • Projekty - DIY (początkujący)
    • Projekty - w budowie (worklogi)
    • Wiadomości
  • Pozostałe
    • Oprogramowanie CAD
    • Druk 3D
    • Napędy
    • Mechanika
    • Zawody/Konkursy/Wydarzenia
    • Sprzedam/Kupię/Zamienię/Praca
    • Inne
  • Ogólne
    • Ogłoszenia organizacyjne
    • Dyskusje o FORBOT.pl
    • Na luzie
    • Kosz

Szukaj wyników w...

Znajdź wyniki, które zawierają...


Data utworzenia

  • Rozpocznij

    Koniec


Ostatnia aktualizacja

  • Rozpocznij

    Koniec


Filtruj po ilości...

Data dołączenia

  • Rozpocznij

    Koniec


Grupa


Znaleziono 2 wyniki

  1. Witam! Pewnie problem na zasadzie początkującego użytkownika STM32 ale co poradzę - wystąpił ! Mianowicie, mam podłączone 3 przyciski do STM32F103CBT6, przyciski podłączone z rezystorem pull-up i poprzez kondensator filtrujący. W procesorze włączony również pull-up na wejściu od przycisku. Reakcja na wciśnięcie (zbocze opadające) miała być uruchamiana z wykorzystaniem przerwań zewnętrznych. I tu pojawia się problem bo o ile program nie zajmuje się czymś innym albo tylko jakimiś drobnymi rzeczami to wszystko jest w porządku - reakcja następuje od razu. Jeśli tylko zacznę np. więcej rzeczy wyświetlać na OLEDzie to reakcja następuje losowo. Wszystkie przerwania mają priorytety i grupy ustawione na 0. Dodam, że sprawdzałem na oscyloskopie czy występują jakiekolwiek drgania styków - zbocze opadające jest gładziutkie, nie ma możliwości, ze tu coś jest nie halo. Program pisany w HALu tak jak w kursie Forbota. Jeśli będzie potrzeba to dodam listing. Dodatkowo również w ten sam sposób uruchomione są przerwania z zewnętrznego urządzenia i tam wszystko śmiga, no a na przyciskach nie chce - ciekawe. Proszę o jakieś sugestie co to może być, czy ktoś się z czymś spotkał.
  2. Witam, Posiadam STM32 f429, nucleo 144. Chciałbym zrealizować program, który będzie wykonywał odczyt zmiennej (napięcia, stosując przetwornik ADC) cyklicznie, np co 2 sekundy. Poniżej wrzucam mój kod, w którym wywoływane jest przerwanie po każdym zakończeniu konwersji ADC. /* USER CODE BEGIN Header */ /** ****************************************************************************** * @file : main.c * @brief : Main program body ****************************************************************************** * @attention * * <h2><center>&copy; Copyright (c) 2019 STMicroelectronics. * All rights reserved.</center></h2> * * This software component is licensed by ST under BSD 3-Clause license, * the "License"; You may not use this file except in compliance with the * License. You may obtain a copy of the License at: * opensource.org/licenses/BSD-3-Clause * ****************************************************************************** */ /* USER CODE END Header */ /* Includes ------------------------------------------------------------------*/ #include "main.h" /* Private includes ----------------------------------------------------------*/ /* USER CODE BEGIN Includes */ /* USER CODE END Includes */ /* Private typedef -----------------------------------------------------------*/ /* USER CODE BEGIN PTD */ /* USER CODE END PTD */ /* Private define ------------------------------------------------------------*/ /* USER CODE BEGIN PD */ /* USER CODE END PD */ /* Private macro -------------------------------------------------------------*/ /* USER CODE BEGIN PM */ /* USER CODE END PM */ /* Private variables ---------------------------------------------------------*/ ADC_HandleTypeDef hadc1; ADC_HandleTypeDef hadc2; uint16_t adc1 = 0; //zmienna nieprzekonwertowana uint16_t adc2 = 0; //zmienna nieprzekonwertowanan float v1 = 0; //zmienna przekonwertowana dla 3,3 V float a1 = 0; //do pomiaru pradu TIM_HandleTypeDef htim4; /* USER CODE BEGIN PV */ /* USER CODE END PV */ /* Private function prototypes -----------------------------------------------*/ void SystemClock_Config(void); static void MX_GPIO_Init(void); static void MX_ADC1_Init(void); static void MX_ADC2_Init(void); static void MX_TIM4_Init(void); static void MX_GFXSIMULATOR_Init(void); /* USER CODE BEGIN PFP */ void HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef* hadc){ // przerwanie adc1 = HAL_ADC_GetValue(&hadc1); v1 = (float)adc1 * 3.3f / 4096.0f; TIM4->CCR2 = adc1; // przypisanie wartosci adc1 do rejestru timera PWM adc2 = HAL_ADC_GetValue(&hadc2); a1 = ((float)adc2 * 3.3f / 4096.0f)/0.47; //0,47 taka rezystancja rezystora, prad z prawa Ohma if (v1 > 3.1) HAL_GPIO_WritePin(GPIOB, GPIO_PIN_0, GPIO_PIN_SET); else HAL_GPIO_WritePin(GPIOB, GPIO_PIN_0, GPIO_PIN_RESET); } /* USER CODE END PFP */ /* Private user code ---------------------------------------------------------*/ /* USER CODE BEGIN 0 */ /* USER CODE END 0 */ /** * @brief The application entry point. * @retval int */ int main(void) { /* USER CODE BEGIN 1 */ /* USER CODE END 1 */ /* MCU Configuration--------------------------------------------------------*/ /* Reset of all peripherals, Initializes the Flash interface and the Systick. */ HAL_Init(); /* USER CODE BEGIN Init */ /* USER CODE END Init */ /* Configure the system clock */ SystemClock_Config(); /* USER CODE BEGIN SysInit */ /* USER CODE END SysInit */ /* Initialize all configured peripherals */ MX_GPIO_Init(); MX_ADC1_Init(); MX_ADC2_Init(); MX_TIM4_Init(); MX_GFXSIMULATOR_Init(); /* USER CODE BEGIN 2 */ HAL_ADC_Start_IT(&hadc1); // wystartowanie przetworników ADC HAL_ADC_Start_IT(&hadc2); HAL_TIM_PWM_Start(&htim4, TIM_CHANNEL_2); //wystartowanie PWMa TIM4->CCR2 = 65535; /* USER CODE END 2 */ /* Infinite loop */ /* USER CODE BEGIN WHILE */ while (1) { /* USER CODE END WHILE */ /* USER CODE BEGIN 3 */ } /* USER CODE END 3 */ } /** * @brief System Clock Configuration * @retval None */ void SystemClock_Config(void) { RCC_OscInitTypeDef RCC_OscInitStruct = {0}; RCC_ClkInitTypeDef RCC_ClkInitStruct = {0}; /** Configure the main internal regulator output voltage */ __HAL_RCC_PWR_CLK_ENABLE(); __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE3); /** Initializes the CPU, AHB and APB busses clocks */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI; RCC_OscInitStruct.HSIState = RCC_HSI_ON; RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE; if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { Error_Handler(); } /** Initializes the CPU, AHB and APB busses clocks */ RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSI; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1; if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_0) != HAL_OK) { Error_Handler(); } } /** * @brief ADC1 Initialization Function * @param None * @retval None */ static void MX_ADC1_Init(void) { /* USER CODE BEGIN ADC1_Init 0 */ /* USER CODE END ADC1_Init 0 */ ADC_ChannelConfTypeDef sConfig = {0}; /* USER CODE BEGIN ADC1_Init 1 */ /* USER CODE END ADC1_Init 1 */ /** Configure the global features of the ADC (Clock, Resolution, Data Alignment and number of conversion) */ hadc1.Instance = ADC1; hadc1.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV2; hadc1.Init.Resolution = ADC_RESOLUTION_12B; hadc1.Init.ScanConvMode = DISABLE; hadc1.Init.ContinuousConvMode = ENABLE; hadc1.Init.DiscontinuousConvMode = DISABLE; hadc1.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE; hadc1.Init.ExternalTrigConv = ADC_SOFTWARE_START; hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT; hadc1.Init.NbrOfConversion = 1; hadc1.Init.DMAContinuousRequests = DISABLE; hadc1.Init.EOCSelection = ADC_EOC_SINGLE_CONV; if (HAL_ADC_Init(&hadc1) != HAL_OK) { Error_Handler(); } /** Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time. */ sConfig.Channel = ADC_CHANNEL_10; sConfig.Rank = 1; sConfig.SamplingTime = ADC_SAMPLETIME_480CYCLES; if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN ADC1_Init 2 */ /* USER CODE END ADC1_Init 2 */ } /** * @brief ADC2 Initialization Function * @param None * @retval None */ static void MX_ADC2_Init(void) { /* USER CODE BEGIN ADC2_Init 0 */ /* USER CODE END ADC2_Init 0 */ ADC_ChannelConfTypeDef sConfig = {0}; /* USER CODE BEGIN ADC2_Init 1 */ /* USER CODE END ADC2_Init 1 */ /** Configure the global features of the ADC (Clock, Resolution, Data Alignment and number of conversion) */ hadc2.Instance = ADC2; hadc2.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV2; hadc2.Init.Resolution = ADC_RESOLUTION_12B; hadc2.Init.ScanConvMode = DISABLE; hadc2.Init.ContinuousConvMode = ENABLE; hadc2.Init.DiscontinuousConvMode = DISABLE; hadc2.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE; hadc2.Init.ExternalTrigConv = ADC_SOFTWARE_START; hadc2.Init.DataAlign = ADC_DATAALIGN_RIGHT; hadc2.Init.NbrOfConversion = 1; hadc2.Init.DMAContinuousRequests = DISABLE; hadc2.Init.EOCSelection = ADC_EOC_SINGLE_CONV; if (HAL_ADC_Init(&hadc2) != HAL_OK) { Error_Handler(); } /** Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time. */ sConfig.Channel = ADC_CHANNEL_11; sConfig.Rank = 1; sConfig.SamplingTime = ADC_SAMPLETIME_480CYCLES; if (HAL_ADC_ConfigChannel(&hadc2, &sConfig) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN ADC2_Init 2 */ /* USER CODE END ADC2_Init 2 */ } /** * @brief GFXSIMULATOR Initialization Function * @param None * @retval None */ static void MX_GFXSIMULATOR_Init(void) { /* USER CODE BEGIN GFXSIMULATOR_Init 0 */ /* USER CODE END GFXSIMULATOR_Init 0 */ /* USER CODE BEGIN GFXSIMULATOR_Init 1 */ /* USER CODE END GFXSIMULATOR_Init 1 */ /* USER CODE BEGIN GFXSIMULATOR_Init 2 */ /* USER CODE END GFXSIMULATOR_Init 2 */ } /** * @brief TIM4 Initialization Function * @param None * @retval None */ static void MX_TIM4_Init(void) { /* USER CODE BEGIN TIM4_Init 0 */ /* USER CODE END TIM4_Init 0 */ TIM_ClockConfigTypeDef sClockSourceConfig = {0}; TIM_MasterConfigTypeDef sMasterConfig = {0}; TIM_OC_InitTypeDef sConfigOC = {0}; /* USER CODE BEGIN TIM4_Init 1 */ /* USER CODE END TIM4_Init 1 */ htim4.Instance = TIM4; htim4.Init.Prescaler = 0; htim4.Init.CounterMode = TIM_COUNTERMODE_UP; htim4.Init.Period = 65535; htim4.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1; htim4.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE; if (HAL_TIM_Base_Init(&htim4) != HAL_OK) { Error_Handler(); } sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL; if (HAL_TIM_ConfigClockSource(&htim4, &sClockSourceConfig) != HAL_OK) { Error_Handler(); } if (HAL_TIM_PWM_Init(&htim4) != HAL_OK) { Error_Handler(); } sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET; sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE; if (HAL_TIMEx_MasterConfigSynchronization(&htim4, &sMasterConfig) != HAL_OK) { Error_Handler(); } sConfigOC.OCMode = TIM_OCMODE_PWM1; sConfigOC.Pulse = 0; sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH; sConfigOC.OCFastMode = TIM_OCFAST_DISABLE; if (HAL_TIM_PWM_ConfigChannel(&htim4, &sConfigOC, TIM_CHANNEL_2) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN TIM4_Init 2 */ /* USER CODE END TIM4_Init 2 */ HAL_TIM_MspPostInit(&htim4); } /** * @brief GPIO Initialization Function * @param None * @retval None */ static void MX_GPIO_Init(void) { GPIO_InitTypeDef GPIO_InitStruct = {0}; /* GPIO Ports Clock Enable */ __HAL_RCC_GPIOC_CLK_ENABLE(); __HAL_RCC_GPIOB_CLK_ENABLE(); __HAL_RCC_GPIOA_CLK_ENABLE(); /*Configure GPIO pin Output Level */ HAL_GPIO_WritePin(GPIOB, GPIO_PIN_0|GPIO_PIN_14, GPIO_PIN_RESET); /*Configure GPIO pins : PB0 PB14 */ GPIO_InitStruct.Pin = GPIO_PIN_0|GPIO_PIN_14; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; HAL_GPIO_Init(GPIOB, &GPIO_InitStruct); } /* USER CODE BEGIN 4 */ /* USER CODE END 4 */ /** * @brief This function is executed in case of error occurrence. * @retval None */ void Error_Handler(void) { /* USER CODE BEGIN Error_Handler_Debug */ /* User can add his own implementation to report the HAL error return state */ /* USER CODE END Error_Handler_Debug */ } #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None */ void assert_failed(uint8_t *file, uint32_t line) { /* USER CODE BEGIN 6 */ /* User can add his own implementation to report the file name and line number, tex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */ /* USER CODE END 6 */ } #endif /* USE_FULL_ASSERT */ /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
×
×
  • Utwórz nowe...