Skocz do zawartości

Przeszukaj forum

Pokazywanie wyników dla tagów 'akumulator'.

  • Szukaj wg tagów

    Wpisz tagi, oddzielając przecinkami.
  • Szukaj wg autora

Typ zawartości


Kategorie forum

  • Elektronika i programowanie
    • Elektronika
    • Arduino i ESP
    • Mikrokontrolery
    • Raspberry Pi
    • Inne komputery jednopłytkowe
    • Układy programowalne
    • Programowanie
    • Zasilanie
  • Artykuły, projekty, DIY
    • Artykuły redakcji (blog)
    • Artykuły użytkowników
    • Projekty - roboty
    • Projekty - DIY
    • Projekty - DIY (początkujący)
    • Projekty - w budowie (worklogi)
    • Wiadomości
  • Pozostałe
    • Oprogramowanie CAD
    • Druk 3D
    • Napędy
    • Mechanika
    • Zawody/Konkursy/Wydarzenia
    • Sprzedam/Kupię/Zamienię/Praca
    • Inne
  • Ogólne
    • Ogłoszenia organizacyjne
    • Dyskusje o FORBOT.pl
    • Na luzie
    • Kosz

Szukaj wyników w...

Znajdź wyniki, które zawierają...


Data utworzenia

  • Rozpocznij

    Koniec


Ostatnia aktualizacja

  • Rozpocznij

    Koniec


Filtruj po ilości...

Data dołączenia

  • Rozpocznij

    Koniec


Grupa


Znaleziono 7 wyników

  1. Witam. Posiadam 4 takie akumulatory: https://botland.com.pl/pl/akumulatory-li-ion/5660-ogniwo-18650-li-ion-samsung-icr18650-26jm-2600mah.html . Moje pytanie czy przy ich równoległym połączeniu mogę je spokojnie ładować przy pomocy tego sterownika: https://botland.com.pl/pl/ladowarki-lipol-moduly/6944-ladowarka-li-pol-tp4056-pojedyncza-cela-1s-37v-microusb-z-zabezpieczeniami.html ? Pytam ponieważ ten sterownik jest opisany jako przeznaczony do ładowania 1 celowych akumulatorów (jeśli dobrze rozumiem to cela=ogniwo, a w tym przypadku podczas ładowania bedą one 4). Z góry dziękuje.
  2. Witam. Jestem w trakcie planowania budowy łazika mam juz zakupione niektóre komponenty do pierwszego prototypu. Sercem łazika będzie płytka arduino, silnikami będzie sterować poprzez 3 układy l298n (każdy będzie sterować 2 silnikami 12v) z czego 1 będzie również zasilać arduino. Lecz nie wiem jeszcze jak rozwiązać problem zasilania. Myslalem czy by nie połączyć 3 układów równolegle a potem wszystko pod zasilanie. Tylko jakie? Myślałem nad akumulatorem żelowym 12v, nie są zbyt drogie można je znalesc za 33zl A ładowarkę za około 19 zł. Tylko kompletnie nic nie wiem o takich akumulatorach. Myslalem też nad akumulatorem litowo polimerowym tylko że ładowarki do nich kosztują krocie A i same akumulatory nie mają dużej pojemności. Proszę o pomoc .
  3. Witam wszystkich mam takie pytanko i problem jestem zielony w akumulatorach a mam do podmianki baterie do odkurzacza automatycznego czy da się podmienić cztery akumulatory widoczne na zdięciu i co to za płytka z układem jest połączona z bateriami ?? Dzięki za odpowiedz.
  4. Witam, posiadam 8x Akumulatorki AA R6 Green Cell 2600mAh, są to akumulatorki typu Ni-MH połączone szeregowo. Czy istnie sposób doładowania ich bez wyciągania z koszyka w którym są umieszczone? Czy jednak niezbędna jest ładowarka i wyciąganie ogniw do ładowania.
  5. Wymagania Postanowiłem zbudować zegar. O, kolejny projekt zegara, jakich w necie jest setki lub tysiące? No tak właśnie pomyślałem, przecież wśród tysięcy projektów zegara na pewno znajdę odpowiedni dla siebie ale niestety, po kilku dniach szukania dałem sobie spokój, nie ma takiego jak ja chcę. Dlatego rozpisałem wymagania i podzieliłem na obowiązkowe oraz opcjonalne, aby jeszcze raz przemyśleć i poszukać lub zastanowić się nad własnym projektem. Wymagane obowiązkowe: zasilanie akumulatorowe (najlepiej li-ion typu 18650) z okresem działania co najmniej 2 miesiące, dobra widoczność w nocy - wymagane podświetlenie wraz z regulacją jasności świecenia aby w nocy nie rozświetlał połowy pokoju tylko delikatnie się jarzył. duże cyfry min. 4 cm dokładność +/- 1 min/rok. Wymagania opcjonalne: automatyczne przestawianie czasu na letni i zimowy, nie musi pokazywać czasu non stop, wystarczy szybkie włączenie w reakcji na czujnik ruchu. No i niestety żaden projekt który znalazłem nie spełniał wszystkich 4 punktów obowiązkowych. Najczęściej jak w projekcie były duże widoczne wyświetlacze LED to było wymagane zasilanie sieciowe bo nikt się nie przejmował poborem prądu. Pierwsza myśl była taka, że może nie da się tego pogodzić, więc z ciekawości zabrałem się za analizę i weryfikację wymagań. Czy da się technicznie zrobić co spełnia wymagania obowiązkowe? Projekt Wstępne wyliczenia pokazały, że 7 segmentowe wyświetlacze o wielkości 1,8 cala są widoczne w nocy przy prądzie ok. 0,02 mA na segment, całkiem nieźle. Jednak w drugą stronę przy świetle dziennym do wyraźnego widzenia godziny wymagany jest prąd około 5-10 mA na segment no to dużo gorzej. Jednak opierając się o te wyliczenia i dodając czujnik ruchu PIR oraz czujnik oświetlenia zaprojektowałem zegar który powinien spełnić moje wymagania. Centralny mikrokontroler to Atmega88PA, który większość czasu jest uśpiony i pobiera tylko kilkanaście µA. Jako dokładny zegar wykorzystałem gotowy moduł DS3231. Bałem się trochę o prąd pobierany przez czujnik PIR, jednak okazało się, że moduł SR-505 zadowala się tylko ok. 50 µA. Dodatkowo do kontroli ładowania i zabezpieczenia akumulatora użyłem modułu z TP4056. Budowa Po etapie analizy wstępnie mogłem narysować schemat, w sumie prawie standardowy zegar tylko z dwoma obwodami zasilania. Pierwszy obwód o napięciu ok. 3.3V zasila mikrokontroler i pozostałe moduły: zegar i czujnik PIR. Drugi obwód z przetwornicą 5V zasila drivery 74HCT541 i wyświetlacze LED. Do narysowania schematu i projektu PCB użyłem programu KiCad oraz FreeRouting. Oto schemat, zaprojektowana płytka PCB i wizualizacja 3D Niestety już po zleceniu wykonania płytki PCB, eksperymentując z Atmega88PA, doczytałem i sprawdziłem też w praktyce na płytce stykowej, że wykorzystując do sterowania jasnością LED licznik 2 zamiast licznika 0 można znacząco ograniczyć pobór prądu. Sposób polega na generowaniu za pomocą licznika 2 modulacji PWM w której pomiędzy okresami CPU jest uśpiony w trybie SLEEP_MODE_EXT_STANDBY. Dlatego już podczas składania zegara dolutowałem dwa dodatkowe przewody zamieniając piny PD3<->PD5 czyli funkcje OC0B z OC2B, które one pełnią, dzięki temu uzyskałem zmniejszenie poboru prądu podczas wyświetlania godziny. Dodatkowo jeszcze wejścia sterujące jednego z buforów 74HCT541 podłączyłem na stałe do masy co zwolniło jeden z pinów Atmega do ewentualnego wykorzystania w przyszłości. Jeszcze po testach modułów postanowiłem zasilanie modułu DS3231 podłączyć do wyjścia Atmega i włączać zasilanie tego modułu tylko na moment odczytania aktualnego czasu co dodatkowo zredukowało pobierany prąd. Docelowo po uruchomieniu wersji testowej inne zmiany, w porównaniu do pierwszej wersji schematu z której było projektowane PCB, jak na razie nie były wymagane. Będąc przewidujący wyprowadziłem wszystkie mające znaczenie piny mikrokontrolera na kilka portów umożliwiających dolutowanie w przyszłości złącz szpilkowych tzw. goldpiny. Dzięki wyprowadzeniom szpilkowym zaprojektowana płytka PCB może pełnić rolę modułu dużego wyświetlacza LED sterowanego np. z Arduino lub innego zewnętrznego sterownika zasilanego 2,8-5V. Zegar w trakcie lutowania. Uruchomienie Podzieliłem uruchomienie na dwa etapy. W pierwszym przetestowałem obwód 3.3V co pozwoliło znaleźć kilka błędów programowych które uniemożliwiały przejście w tryb SLEEP_MODE_PWR_DOWN. W drugim etapie podłączyłem obwód 5V na razie bez wyświetlaczy LED i tu małe zaskoczenie, same bufory 74HCT541 w stanie włączenie ale bez żadnego obciążenia pobierają prąd kilka mA. Szybki test na płytce stykowej to niestety potwierdził, więc to nie był błąd w programie czy w montażu. Widocznie ten "model tak ma". Zamiana na D74HC541C nie pomogła a wręcz pogorszyła sytuację. No trudno te kilka mA w stanie aktywnym jakoś odżałuję, na szczęście stan wybudzenia to może 1% czasu pracy. Ostatecznie udało się zmniejszyć w trakcie uśpienia zegara pobór prądu do około 80 µA co uważam za sukces całego projektu. Jak się zegar będzie zachowywał i co ile czasu wymagane będzie doładowanie akumulatora okaże się w praktyce. Zdjęcia zmontowanego i uruchomionego zegara. Podsumowanie Ostatecznie udało mi zegar uruchomić i spełnić moje wymagania. Zdjęcie zegara w docelowym miejscu, a właściwie dwóch zegarów bo z rozpędu wykonałem dwie sztuki. Teraz mam jeden używany jako zegar i drugi do testów, rozbudowy i eksperymentów. Rozbudowa w przyszłości Po pewnym okresie użytkowania pojawiły się pomysły na rozbudowę: Bezprzewodowa synchronizacja z dokładnym zewnętrznym zegarem - niestety pierwszego pomysłu aby synchronizować zegar z siecią GPS nie udało mi się zrealizować z powodu słabego sygnału satelitów dostępnego w docelowym miejscu gdzie zegar ma się znajdować. Dlatego zamiast GPS planuję dołożyć moduł Bluetooth Low Energy HM-10 oraz dopisać prostą aplikację na Androida która będzie przesyłąła aktualny czas do modułu. Zatrzymywanie filmu gestem - zegar powstał jako „dodatek” do TV i jako taki sprawdza się doskonale, szczególnie kiedy wieczorem oglądam film i mogę na bieżąco kontrolować godzinę bez odrywania wzroku od ekranu. Jednak zamarzyła mi się opcja włączania pauzy w TV jedynie poprzez zbliżenie ręki od zegara. Zakupiłem już w tym celu moduł APDS9960 i po pierwszych testach wygląda na spełniający wymagania, czas reakcji na zbliżenie ręki na ok. 10cm jest błyskawiczny. Planuję w reakcji na zbliżenie przez dołączoną diodę IR emitować sygnał pilota Play/Pause.
  6. Witam! Budując swoje dotychczasowe układy, jako zasilanie wykorzystywałem zwykłe baterie i chciałbym w końcu 'pójść krok dalej' i zamienić jednorazowe ogniwa na odnawialne akumulatorki Tylko problem w tym, że nie mam zielonego pojęcia jak się z nimi obchodzić, w sensie jaki rodzaj akumulatora dobrać do urządzenia? W jaki sposób je bezpiecznie naładować i czym? Jak je przechowywać? itd. Mógłby ktoś mnie trochę wprowadzić w ten temat, albo chociaż odesłać do odpowiednich materiałów? Z góry dziękuje i pozdrawiam!
  7. LiPol Charger v1.0 / v2.0 Szanowni czytelnicy forum w tym krótkim artykule przedstawię Wam projekt ładowarki do akumulatorów litowo-polimerowych 2 celowych (7,4V). Prace nad projektem rozpoczęły się bardzo dawno temu, co można było śledzić w tym wątku. Dużą rolę w trakcie projektowania samego układu odegrał kolega @marek1707. Tak naprawdę ostateczna forma pierwszej wersji ładowarki została bardzo mocno zasugerowana przez niego dzięki temu działa ona niezawodnie. Układy zostały zaprojektowane wedle następujących założeń: możliwość ładowania akumulatorów 2 celowych przy pomocy źródła zasilania o napięciu 5V i natężeniu prądu nie większym niż 1A (na tyle pozwalały zastosowane elementy elektroniczne) oraz ładowanie z wykorzystaniem 2 paneli słonecznych 6V/300mA, które aktualnie miałem pod ręką - stąd zastosowano układ przetwornicy typu boost, zastosowanie przewodowej lub bezprzewodowej komunikacji z komputerem PC, wykorzystanie diod LED do sygnalizacji stanów pracy ładowarki, (v2.0) wyświetlanie informacji na wyświetlaczu alfanumerycznym 2x16, (v2.0) dodanie przycisków do ręcznej interakcji użytkownika z urządzeniem, (v2.0) wbudowanie prototypu prostego balansera ogniw, (v2.0) wyprowadzenie padów do programowej kalibracji przetwornika ADC. LiPol charger v1.0 Wersja pierwsza ładowarki jest wersją niekombinowaną oraz dość niezawodną. Pełny cykl ładowania akumulatora obejmuje zarówno fazę CC (stałoprądową) oraz CV (stałonapięciową). Cykl ten świetnie obrazuje WYKRES, który podrzucił mi kolega @marek1707 i który zapamiętam do końca swojego życia Zasadę działania przetwornicy boost wydaje mi się, że każdy elektronik powinien znać. Jeśli jednak czytelniku nie miałeś okazji zapoznać się z tym rodzajem przetwornic podsyłam ciekawe artykuły na ten temat: LINK, LINK. W skrócie - na wejściu przetwornica otrzymuje napięcie maksymalne 6V oraz prąd maksymalny 1A. Sygnał PWM generowany przez mikrokontroler ze stałą częstotliwością, a zmiennym wypełnieniem otwiera lub zamyka tranzystor kluczujący przetwornicę, który dzięki temu reguluje napięcie lub prąd wyjściowy przetwornicy w zależności od fazy algorytmu ładowania CC/CV. Zastosowano w tym celu najzwyklejszy regulator proporcjonalny. Mikrokontroler ma możliwość pomiaru potrzebnych parametrów tj. napięcia i prądy wejściowe/wyjściowe oraz napięcie międzyogniwowe. Napięcia są mierzone poprzez dzielniki napięciowe natomiast pomiar prądów odbywa się z wykorzystaniem układów bocznikowych. Komunikacja z komputerem odbywa się poprzez moduł Bluetooth (BTM222 lub HC-05) lub z wykorzystaniem przejściówki USB-UART. Dodatkowo domowymi metodami wykonałem shield umożliwiający podłączenie wyświetlacza alfanumerycznego 2x16. Ostatecznie wykorzystując źródło napięcia stałego 5V/1A udało się uzyskać przetwornicę o sprawności ok. 65%. Całkiem niezły wynik jak na prototyp. Straty mocy są związane ze stratami na diodzie, indukcyjności oraz NIE zastosowaniu kondensatorów typu Low ESR. Wszystkie te parametry można jeszcze trochę poprawić przez co możliwe jest zwiększenie sprawności samej przetwornicy. Wykorzystanie do ładowania paneli słonecznych zmusiło do zastosowania najprostszego algorytmu MPPT - śledzenia punktu maksymalnej mocy. Panele słoneczne połączone są równolegle przez co uzyskano większy prąd wejściowy na przetwornicę. W tym połączeniu maksymalny prąd wejściowy wynosi 600 mA dla posiadanych przeze mnie paneli 6V/300mA. Biorąc pod uwagę to, że w polskich warunkach z tych paneli jestem w stanie wyciągnąć maksymalnie 70-80% całkowitej sprawności przy bezchmurnej pogodzie prąd ładowania akumulatorów jest niewielki. Dlatego ten tryb ładowania sprawdza się raczej przy niewielkich akumulatorach. Ale najważniejsze, że się sprawdza LiPol charger v2.0 Druga wersja ładowarki nie została jeszcze przetestowana!!! Natomiast wzbogaciłem ją o kilka praktycznych dodatków, których brakowało mi w poprzedniej wersji. Wersja v2.0 została wzbogacona o prototyp balansera złożonego z dwóch oporników dużej mocy oraz tranzystorów sterowanych z poziomu mikrokontrolera, który na podstawie pomiaru napięcia międzyogniwowego decyduje o tym, który obwód „strat mocy” załączyć. Jeśli któryś z tranzystorów zostaje otwarty, przez rezystor przepływa prąd, natomiast ładowanie danego ogniwa akumulatora jest pomijane. Dzięki temu możliwe jest wyrównanie poziomów napięć na obu ogniwach. Dodatkowo wyprowadzone zostały pady pomiarowe, które znacznie ułatwiają kalibrację odczytów z przetwornika ADC. Wbudowano również konwerter USB-UART na podstawie chipu FT230XQ, wyprowadzono również piny Rx i Tx w celu podłączenia np. modułu Bluetooth. W tym projekcie udało się znacząco zmniejszyć wymiary ładowarki. Kompletne schematy obu wersji ładowarki udostępniam w pdf’ach poniżej. LiPolCharger_v1_0.pdf LiPolCharger_v2_0.pdf Wykaz ważniejszych elementów wykorzystanych w układach ładowarek: mikrokontroler ATmega32 tranzystor kluczujący MOSFET-N STS12NF30L driver MOSFET MCP1402T cewka 220 uH wzmacniacze operacyjne LM358 wyświetlacz alfanumeryczny 2x16 konwerter USB-UART FT230XQ, tranzystory bipolarne NPN i PNP dowolne, pod warunkiem, że maksymalny prąd kolektor-emiter będzie większy niż 1A. Jeśli ktoś z czytelników będzie zainteresowany tematem owych ładowarek serdecznie zapraszam do zadawania pytań w komentarzach, a także ewentualnego krytykowania (oczywiście konstruktywnego) mojego projektu.
×
×
  • Utwórz nowe...