Skocz do zawartości

Kłopot z obsługą przekazywaniem danych przez dma z adc do dac.


dragolice

Pomocna odpowiedź

Cześć. Jak dobrze zrozumiałem zasadę działania DMA to umożliwia ono bezpośrednią komunikację pomiędzy peryferiami.

Co chciałbym uzyskać:
Załóżmy, że na pin przetwornika ADC trafia sygnał sinusoidalnie zmienny o częstotliwości 1kHz.
Chciałbym, aby ze stałym okresem był on próbkowany przez przetwornik ADC i wystawiany na przetwornik DAC.
Chodzi o to, że potrzebowałbym operować na zmierzonych próbkach i wystawiać zmieniony sygnał na przetwornik DAC (filtracja sygnałów).

Jeśli chodzi o stały odstęp pomiędzy pomiarami od razu do głowy wpadł mi pomysł wykorzystania timera i przerwania od niego.

Gdy przerwanie zostanie wykryte, w obsłudze chciałem dodać pomiar napięcia z przetwornika ADC, odczytanie wartości zmierzonej i przekazanie tej wartości do przetwornika DAC.

I to tyle, czy DMA, które usilnie próbuję zaimplementować jest tutaj konieczne? Jak powinno się to robić, aby wszystko było jak najbardziej optymalne i pozwalało na sprawne próbkowanie jak najwyższych częstotliwości?

Jeśli to coś pomoże to wstawiam kod (pogubiłem się juz w trakcie jego pisania), prosze o nakierowanie :).
 

/* USER CODE BEGIN Header */
/**
  ******************************************************************************
  * @file           : main.c
  * @brief          : Main program body
  ******************************************************************************
  * @attention
  *
  * Copyright (c) 2024 STMicroelectronics.
  * All rights reserved.
  *
  * This software is licensed under terms that can be found in the LICENSE file
  * in the root directory of this software component.
  * If no LICENSE file comes with this software, it is provided AS-IS.
  *
  ******************************************************************************
  */
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"

/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */

/* USER CODE END Includes */

/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */

/* USER CODE END PTD */

/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */

/* USER CODE END PD */

/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */

/* USER CODE END PM */

/* Private variables ---------------------------------------------------------*/
ADC_HandleTypeDef hadc1;
DMA_HandleTypeDef hdma_adc1;

DAC_HandleTypeDef hdac1;
DMA_HandleTypeDef hdma_dac1_ch1;

TIM_HandleTypeDef htim3;

/* USER CODE BEGIN PV */

/* USER CODE END PV */

/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_DMA_Init(void);
static void MX_ADC1_Init(void);
static void MX_DAC1_Init(void);
static void MX_TIM3_Init(void);
/* USER CODE BEGIN PFP */

/* USER CODE END PFP */

/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
#define ADC_BUFFER_SIZE 4096  // Określ rozmiar bufora ADC.
#define DAC_BUFFER_SIZE 4096  // Określ rozmiar bufora DAC.

uint32_t adc_buffer[ADC_BUFFER_SIZE];  // Bufor na dane ADC.
uint32_t dac_buffer[DAC_BUFFER_SIZE];  // Bufor na dane DAC.

volatile uint32_t adc_value;  // Volatile, bo będzie używane w przerwaniu
volatile uint32_t test;

void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim)
{
    if (htim->Instance == TIM3)
    {
        // Wyzwolenie konwersji ADC przez software start
    	HAL_ADC_Start_IT(&hadc1);
    }
}

void HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef* hadc) // Callback jest automatycznie wywoływany po zakończeniu konwersji przetwornika ADC.
{
	adc_value = HAL_ADC_GetValue (&hadc1);
}


/* USER CODE END 0 */

/**
  * @brief  The application entry point.
  * @retval int
  */
int main(void)
{
  /* USER CODE BEGIN 1 */

  /* USER CODE END 1 */

  /* MCU Configuration--------------------------------------------------------*/

  /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
  HAL_Init();

  /* USER CODE BEGIN Init */

  /* USER CODE END Init */

  /* Configure the system clock */
  SystemClock_Config();

  /* USER CODE BEGIN SysInit */

  /* USER CODE END SysInit */

  /* Initialize all configured peripherals */
  MX_GPIO_Init();
  MX_DMA_Init();
  MX_ADC1_Init();
  MX_DAC1_Init();
  MX_TIM3_Init();
  /* USER CODE BEGIN 2 */

  HAL_ADC_Start_DMA(&hadc1, adc_buffer, ADC_BUFFER_SIZE); 									// Start ADC w trybie DMA
  HAL_DAC_Start_DMA(&hdac1, DAC_CHANNEL_1, dac_buffer, DAC_BUFFER_SIZE, DAC_ALIGN_12B_R); 	// Start DAC w trybie DMA
  HAL_TIM_Base_Start_IT(&htim3);  															// Start TIM3 w trybie przerwań
  /* USER CODE END 2 */

  /* Infinite loop */
  /* USER CODE BEGIN WHILE */
  while (1)
  {
	  if(adc_value > 1862) // Jeśli napięcie przekracza 1.5V
	  {

		  HAL_GPIO_WritePin(LD2_GPIO_Port, LD2_Pin, GPIO_PIN_SET); //Zaświeć LD2 (zakładając, że LD2 jest skonfigurowana poprawnie)
	  }
	  else
	  {

		  HAL_GPIO_WritePin(LD2_GPIO_Port, LD2_Pin, GPIO_PIN_RESET); // Zgaś LD2
	  }

    /* USER CODE END WHILE */

    /* USER CODE BEGIN 3 */
  }
  /* USER CODE END 3 */
}

/**
  * @brief System Clock Configuration
  * @retval None
  */
void SystemClock_Config(void)
{
  RCC_OscInitTypeDef RCC_OscInitStruct = {0};
  RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};

  /** Configure the main internal regulator output voltage
  */
  HAL_PWREx_ControlVoltageScaling(PWR_REGULATOR_VOLTAGE_SCALE1);

  /** Initializes the RCC Oscillators according to the specified parameters
  * in the RCC_OscInitTypeDef structure.
  */
  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
  RCC_OscInitStruct.HSIState = RCC_HSI_ON;
  RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
  RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI;
  RCC_OscInitStruct.PLL.PLLM = RCC_PLLM_DIV1;
  RCC_OscInitStruct.PLL.PLLN = 10;
  RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
  RCC_OscInitStruct.PLL.PLLQ = RCC_PLLQ_DIV2;
  RCC_OscInitStruct.PLL.PLLR = RCC_PLLR_DIV2;
  if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  {
    Error_Handler();
  }

  /** Initializes the CPU, AHB and APB buses clocks
  */
  RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
                              |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
  RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
  RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
  RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;

  if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK)
  {
    Error_Handler();
  }
}

/**
  * @brief ADC1 Initialization Function
  * @param None
  * @retval None
  */
static void MX_ADC1_Init(void)
{

  /* USER CODE BEGIN ADC1_Init 0 */

  /* USER CODE END ADC1_Init 0 */

  ADC_MultiModeTypeDef multimode = {0};
  ADC_ChannelConfTypeDef sConfig = {0};

  /* USER CODE BEGIN ADC1_Init 1 */

  /* USER CODE END ADC1_Init 1 */

  /** Common config
  */
  hadc1.Instance = ADC1;
  hadc1.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV2;
  hadc1.Init.Resolution = ADC_RESOLUTION_12B;
  hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT;
  hadc1.Init.GainCompensation = 0;
  hadc1.Init.ScanConvMode = ADC_SCAN_DISABLE;
  hadc1.Init.EOCSelection = ADC_EOC_SINGLE_CONV;
  hadc1.Init.LowPowerAutoWait = DISABLE;
  hadc1.Init.ContinuousConvMode = ENABLE;
  hadc1.Init.NbrOfConversion = 1;
  hadc1.Init.DiscontinuousConvMode = DISABLE;
  hadc1.Init.ExternalTrigConv = ADC_SOFTWARE_START;
  hadc1.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE;
  hadc1.Init.DMAContinuousRequests = ENABLE;
  hadc1.Init.Overrun = ADC_OVR_DATA_PRESERVED;
  hadc1.Init.OversamplingMode = DISABLE;
  if (HAL_ADC_Init(&hadc1) != HAL_OK)
  {
    Error_Handler();
  }

  /** Configure the ADC multi-mode
  */
  multimode.Mode = ADC_MODE_INDEPENDENT;
  if (HAL_ADCEx_MultiModeConfigChannel(&hadc1, &multimode) != HAL_OK)
  {
    Error_Handler();
  }

  /** Configure Regular Channel
  */
  sConfig.Channel = ADC_CHANNEL_1;
  sConfig.Rank = ADC_REGULAR_RANK_1;
  sConfig.SamplingTime = ADC_SAMPLETIME_92CYCLES_5;
  sConfig.SingleDiff = ADC_SINGLE_ENDED;
  sConfig.OffsetNumber = ADC_OFFSET_NONE;
  sConfig.Offset = 0;
  if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN ADC1_Init 2 */

  /* USER CODE END ADC1_Init 2 */

}

/**
  * @brief DAC1 Initialization Function
  * @param None
  * @retval None
  */
static void MX_DAC1_Init(void)
{

  /* USER CODE BEGIN DAC1_Init 0 */

  /* USER CODE END DAC1_Init 0 */

  DAC_ChannelConfTypeDef sConfig = {0};

  /* USER CODE BEGIN DAC1_Init 1 */

  /* USER CODE END DAC1_Init 1 */

  /** DAC Initialization
  */
  hdac1.Instance = DAC1;
  if (HAL_DAC_Init(&hdac1) != HAL_OK)
  {
    Error_Handler();
  }

  /** DAC channel OUT1 config
  */
  sConfig.DAC_HighFrequency = DAC_HIGH_FREQUENCY_INTERFACE_MODE_AUTOMATIC;
  sConfig.DAC_DMADoubleDataMode = DISABLE;
  sConfig.DAC_SignedFormat = DISABLE;
  sConfig.DAC_SampleAndHold = DAC_SAMPLEANDHOLD_DISABLE;
  sConfig.DAC_Trigger = DAC_TRIGGER_NONE;
  sConfig.DAC_Trigger2 = DAC_TRIGGER_NONE;
  sConfig.DAC_OutputBuffer = DAC_OUTPUTBUFFER_ENABLE;
  sConfig.DAC_ConnectOnChipPeripheral = DAC_CHIPCONNECT_EXTERNAL;
  sConfig.DAC_UserTrimming = DAC_TRIMMING_FACTORY;
  if (HAL_DAC_ConfigChannel(&hdac1, &sConfig, DAC_CHANNEL_1) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN DAC1_Init 2 */

  /* USER CODE END DAC1_Init 2 */

}

/**
  * @brief TIM3 Initialization Function
  * @param None
  * @retval None
  */
static void MX_TIM3_Init(void)
{

  /* USER CODE BEGIN TIM3_Init 0 */

  /* USER CODE END TIM3_Init 0 */

  TIM_ClockConfigTypeDef sClockSourceConfig = {0};
  TIM_MasterConfigTypeDef sMasterConfig = {0};

  /* USER CODE BEGIN TIM3_Init 1 */

  /* USER CODE END TIM3_Init 1 */
  htim3.Instance = TIM3;
  htim3.Init.Prescaler = 100;
  htim3.Init.CounterMode = TIM_COUNTERMODE_UP;
  htim3.Init.Period = 149;
  htim3.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
  htim3.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
  if (HAL_TIM_Base_Init(&htim3) != HAL_OK)
  {
    Error_Handler();
  }
  sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
  if (HAL_TIM_ConfigClockSource(&htim3, &sClockSourceConfig) != HAL_OK)
  {
    Error_Handler();
  }
  sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
  sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
  if (HAL_TIMEx_MasterConfigSynchronization(&htim3, &sMasterConfig) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN TIM3_Init 2 */

  /* USER CODE END TIM3_Init 2 */

}

/**
  * Enable DMA controller clock
  */
static void MX_DMA_Init(void)
{

  /* DMA controller clock enable */
  __HAL_RCC_DMAMUX1_CLK_ENABLE();
  __HAL_RCC_DMA1_CLK_ENABLE();

  /* DMA interrupt init */
  /* DMA1_Channel1_IRQn interrupt configuration */
  HAL_NVIC_SetPriority(DMA1_Channel1_IRQn, 2, 0);
  HAL_NVIC_EnableIRQ(DMA1_Channel1_IRQn);
  /* DMA1_Channel2_IRQn interrupt configuration */
  HAL_NVIC_SetPriority(DMA1_Channel2_IRQn, 2, 0);
  HAL_NVIC_EnableIRQ(DMA1_Channel2_IRQn);

}

/**
  * @brief GPIO Initialization Function
  * @param None
  * @retval None
  */
static void MX_GPIO_Init(void)
{
  GPIO_InitTypeDef GPIO_InitStruct = {0};
/* USER CODE BEGIN MX_GPIO_Init_1 */
/* USER CODE END MX_GPIO_Init_1 */

  /* GPIO Ports Clock Enable */
  __HAL_RCC_GPIOA_CLK_ENABLE();

  /*Configure GPIO pin Output Level */
  HAL_GPIO_WritePin(LD2_GPIO_Port, LD2_Pin, GPIO_PIN_RESET);

  /*Configure GPIO pin : LD2_Pin */
  GPIO_InitStruct.Pin = LD2_Pin;
  GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  GPIO_InitStruct.Pull = GPIO_NOPULL;
  GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
  HAL_GPIO_Init(LD2_GPIO_Port, &GPIO_InitStruct);

/* USER CODE BEGIN MX_GPIO_Init_2 */
/* USER CODE END MX_GPIO_Init_2 */
}

/* USER CODE BEGIN 4 */

/* USER CODE END 4 */

/**
  * @brief  This function is executed in case of error occurrence.
  * @retval None
  */
void Error_Handler(void)
{
  /* USER CODE BEGIN Error_Handler_Debug */
  /* User can add his own implementation to report the HAL error return state */
  __disable_irq();
  while (1)
  {
  }
  /* USER CODE END Error_Handler_Debug */
}

#ifdef  USE_FULL_ASSERT
/**
  * @brief  Reports the name of the source file and the source line number
  *         where the assert_param error has occurred.
  * @param  file: pointer to the source file name
  * @param  line: assert_param error line source number
  * @retval None
  */
void assert_failed(uint8_t *file, uint32_t line)
{
  /* USER CODE BEGIN 6 */
  /* User can add his own implementation to report the file name and line number,
     ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
  /* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */

 

Link do komentarza
Share on other sites

Pomysł z timerem faktycznie jest dobry, można to jednak ulepszyć odrobinę - obecnie wykorzystujesz kod w obsłudze przerwania timera do wyzwolenia przetwornika analogowo-cyfrowego. A dopiero potem kolejnym przerwaniem odczytujesz wartość. Ja proponuję skonfigurowanie timera aby zliczał w taki sposób aby uzyskać 1kHz, a wówczas wykorzystać opcję trigger event selection: update event, przykład z mojego projektu:

image.thumb.png.443211ba6b00b2c616699ff613a8d45f.png

Następnie w konfiguracji ADC ustawić DMA aby wszystko działało automatycznie, i w zakładce ADC_Regular_Conversion wybrać external trigger jako event przychodzący od timera, tutaj też przykład z projektu:

image.thumb.png.6d147a205ed117d8da1dfe12c606e12b.png

Dane odbierasz przez DMA więc o wyzwalanie się nie martwisz, wykorzystujesz tylko HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef *hadc) gdzie będziesz wysyłał dane przez przerwanie albo też skonfiguruj DMA. Myślę, że nawet lepiej byłoby wykorzystać DMA, to w kodzie modyfikowałbyś tylko próbki z adc, a w momencie gdy wstawisz je do zmiennej która jest wykorzystywana przy wysyłaniu przez DMA do DACa, sprzęt zajmie się resztą sam. I taki dodatek, przy 1kHz ta dioda będzie na stałe załączona dla ludzkiego oka, nie jesteśmy w stanie zobaczyć przerw w jej działaniu mimo, że występują

Link do komentarza
Share on other sites

Bądź aktywny - zaloguj się lub utwórz konto!

Tylko zarejestrowani użytkownicy mogą komentować zawartość tej strony

Utwórz konto w ~20 sekund!

Zarejestruj nowe konto, to proste!

Zarejestruj się »

Zaloguj się

Posiadasz własne konto? Użyj go!

Zaloguj się »
×
×
  • Utwórz nowe...

Ważne informacje

Ta strona używa ciasteczek (cookies), dzięki którym może działać lepiej. Więcej na ten temat znajdziesz w Polityce Prywatności.