Popularny post wn2001 Napisano Styczeń 24, 2019 Popularny post Udostępnij Napisano Styczeń 24, 2019 (edytowany) Wstęp Globalizacja światowej gospodarki oraz gwałtowny rozwój techniczny w XX wieku spowodował bardzo duże udoskonalenie metod produkcji, gdzie przemysłowe innowacje pozwoliłyby na produkcję wysokiej jakości dóbr przy dążeniu do jak najniższej ceny wyrobu końcowego. Jednym z owoców tego postępu jest CNC - computerized numerical control / komputerowe sterowanie urządzeń numerycznych, opracowane w MIT w USA w roku 1949. Podstawową różnicą między obróbką ręczną a CNC jest zastąpienie pracownika sterującego maszyną, komputerem, który z wykorzystaniem czujników (indukcyjne liniały pomiarowe, przełączniki krańcowe, elementy optoelektroniczne) i urządzeń wykonawczych (silniki krokowe / serwomechanizmy / serwonapędy) będzie na bieżąco kontrolował przemieszczanie narzędzia (na przykład frezu, noża tokarskiego czy palnika plazmowego/laserowego) zgodnie z przygotowanym wcześniej na podstawie rysunku technicznego zestawem instrukcji sterujących, pozwalając, w porównaniu do metod konwencjonalnych, na uzyskanie większej wydajności, wyższej dokładności i powtarzalności przy mniejszej ilości pracowników (park maszynowy składający się z kilku obrabiarek może obsługiwać jeden programista) oraz redukcji kosztów. Założenia projektu i dane techniczne Celem projektu było zbudowanie sterowanego numerycznie plotera rysującego, który: jako końcówkę wykonawczą wykorzystywałby długopis o średnicy 10mm z możliwością wykorzystywania wkładów o różnych kolorach; w osiach X i Y, napędzanych przez silniki krokowe, posiadał możliwość przesuwu o 120mm; w osi Z, gdzie długopis poruszany przez serwomechanizm modelarski stanowiłby jednocześnie prowadnicę, posiadałby skok kilku milimetrów; wykorzystywałby w osiach X i Y innowacyjne, bezsmarowne moduły liniowe firmy Igus® DryLin®; byłby niski dzięki konstrukcji opartej o stół krzyżowy z wysięgnikiem; był względnie dokładny, z ostateczną dokładnością pozycjonowania na poziomie +/- 0,5mm. Dane techniczne: konstrukcja stołu krzyżowego z wysięgnikiem, oparta o moduły liniowe wykorzystujące prowadnice o średnicy 10mm i śrubie trapezowej o średnicy 10mm i skoku 2mm; moduły liniowe napędzane silnikami krokowymi NEMA16; śruby modułów liniowych połączone z osiami silników krokowych poprzez sprzęgła elastyczne; pole robocze – kwadrat o boku 120mm; uproszczona budowa osi Z - długopis bez możliwości precyzyjnego przesunięcia – podniesienie / opuszczenie dzięki zastosowaniu serwomechanizmu i gumki recepturki; możliwość zerowania (homing) dzięki wykorzystaniu przełączników krańcowych; własnoręcznie wykonany sterownik oparty o Arduino Nano i open-source’owe oprogramowanie GRBL; całość zasilana zasilaczem 12V o maksymalnej wydajności prądowej 4A. Mechanika i oprogramowanie Mechanika maszyny sterowanej numerycznie, poza koniecznością stosowania napędów, w których możliwe będzie zadawanie ściśle określonego przesunięcia, nie różni się wiele od tej stosowanej w konwencjonalnych maszynach. Pierwszym krokiem w przypadku „Pioneer’a” było wybranie modułów liniowych (SLW o maksymalnej długości przejazdu wózka 150mm) firmy Igus®, które pozwalają zamienić ruch obrotowy pokrętła na ruch liniowy wózka dzięki śrubie trapezowej i odpowiedniej nakrętki, zamocowanej wewnątrz wózka. Standardowo nakrętki są wykonywane ze stali nierdzewnej bądź brązu, dla których koniecznością jest smarowanie, ponadto są stosunkowo ciężkie i z biegiem czasu zużywają się. Igus® opracował innowacyjne tworzywo sztuczne iglidur®, które jest doskonałe dla nakrętek, łożysk ślizgowych i panewek pracujących przy małych i średnich obciążeniach dzięki eliminacji wspomnianych wad. Dwa takie moduły zostały ze sobą połączone w stół krzyżowy za pomocą aluminiowego elementu z blachy o grubości 1,5mm – najpierw wycięto odpowiedni prostokąt na gilotynie, następnie otwory nawiercano wiertarką kolumnową, korzystając z rysunku technicznego stworzonego w programie Solid Edge. Drugim programem CAD wykorzystanym do budowy plotera, był Google SketchUp, w którym zaprojektowane zostały wszystkie elementy drukowane później na drukarce 3D W niskobudżetowych konstrukcjach CNC stosuje się silniki krokowe, ze względu na to, że jest to najtańsza w porównaniu do prostoty sterowania opcja napędu, który pozwalałby na precyzyjne zadawanie kąta, o jaki obrócić ma się wał – wykorzystane silniki NEMA16 firmy MicroStep pobierają prąd rzędu 800mA i posiadają rozdzielczość 200 kroków na obrót – zatem pojedynczy impuls obraca wał o 1,8° (teoretycznie zatem, jeżeli skok śruby wynosi 2mm, to dokładność pozycjonowania wózka wyniesie 0,01mm). Osie silnika krokowego (średnica 5mm) i śrub (średnica 10mm) połączone są aluminiowymi sprzęgłami elastycznymi. Wykorzystane sterowniki silników krokowych to A4988 – aby wysterować silnik krokowy, potrzebne są dwa piny – DIR (kierunek obrotów) i STEP (ilość impulsów podanych na to złącze jest równa ilości kroków, o jakie przesunie się wał silnika). Pozwalają one również na tak zwane mikrokroki – w zamian za mniejszy moment obrotowy pozwalają na nawet 16-krotne zwiększenie rozdzielczości, jednak ze względu na bardzo małą odległość przesuwu wózka w osi X bądź Y po podaniu jednego impulsu na wejście STEP (wspomniane 0,01mm) nie wykorzystano tej opcji w tym projekcie (na zdjęciu sterownik wraz z radiatorem). W początkach CNC wysterowaniem step-stick’ów zajmował się bezpośrednio komputer PC, gdzie do pinów portu LPT podłączone były piny sterowników silników krokowych – nie jest to dobre rozwiązanie, gdyż komputer PC musi jednocześnie obsłużyć wiele procesów, a zatem mogą pojawić się błędy w rysowaniu krzywych (wówczas ruch osi X oraz Y musi ze sobą korelować). Wady te można wyeliminować poprzez zainstalowanie systemu operacyjnego czasu rzeczywistego, na przykład LinuxCNC, jednak w zastosowaniach niskobudżetowych optymalne jest wykorzystanie Arduino – oprogramowanie sterujące (GRBL) przesyła paczkami poprzez USB instrukcje do niego właśnie, a ono, pełniąc funkcję buforującą, wysterowuje silniki w sposób ciągły. GRBL to open-source’owe darmowe oprogramowanie rozwijane przez grupę hobbystów z całego świata, oferujące gotowy do wgrania wsad dla płytek Arduino oraz gotowy program sterujący, dostępny dla systemów Windows, Linux i Mac OS, GRBL Controller, który pozwala na zmianę ustawień sterownika, ręczny przesuw końcówki roboczej, wyzerowanie maszyny (jeżeli takowa posiada taką opcję („Pioneer” posiada), na przykład w postaci czujników krańcowych – po włączeniu plotera program nie wie, gdzie znajduje się końcówka wykonawcza, musi więc przesuwać wózki od poszczególnych osi tak długo, aż zareagują na ich obecność krańcówki – to sygnał, że wózek dojechał do początku osi), podgląd pliku G-Code oraz rzecz jasna przesłanie go do sterownika. G-Code dla prostych kształtów napisać można samodzielnie, bądź poprzez program graficzny (stosuję Inkscape z wtyczką MIGRBL – najpierw z grafiki rastrowej program pozyskuje kontur, który jest wektoryzowany). Następnie wtyczka zbiór taki konwertuje do listy punktów i zapisuje w postaci tekstowego pliku o rozszerzeniu .gcode Do mocowania kartki papieru (format A4) wykorzystano taśmę malarską – sprawdziła się w tej roli bardzo dobrze, kartka jest zamocowana pewnie i nie przesuwa się, a po zakończonym rysowaniu łatwo zdjąć ją ze stołu. Program GRBL jest przeznaczony przede wszystkim dla frezarek CNC, ale nie stanowi większego problemu wykorzystanie jako końcówki roboczej, zamiast wrzeciona ze zamontowanym frezem, długopisu. Przed pierwszym użyciem należy go skonfigurować, wprowadzając ustawienia, które są indywidualne dla każdej konstrukcji. Schemat Kilka zdjęć i rysunków 🙂 Robot przeszedł lifting związany z zastąpieniem ciężkiej podstawy ze sklejki płytą ze spienionego PCV 🙂 Podsumowanie Jestem bardzo zadowolony z konstrukcji, mimo niewielkich prędkości stanowi świetny model edukacyjny, doceniony został na I Edycji Konkursu "Elektronika - by żyło się łatwiej" - III miejsce oraz Konkursie Innowacji Technicznych w roku szkolnym 2017/18 - I miejsce na etapie rejonowym i wyróżnienie na ogólnopolskim 🙂 Pozdrawiam, wn2001 Edytowano Styczeń 24, 2019 przez Treker Poprawiłem formatowanie. 4 Link do komentarza Share on other sites More sharing options...
Treker (Damian Szymański) Styczeń 24, 2019 Udostępnij Styczeń 24, 2019 @wn2001, właśnie zaakceptowałem opis. Dziękuję za przedstawienie ciekawego projektu, zachęcam do prezentowania kolejnych DIY oraz aktywności na naszym forum 😉 1 Link do komentarza Share on other sites More sharing options...
Pomocna odpowiedź
Bądź aktywny - zaloguj się lub utwórz konto!
Tylko zarejestrowani użytkownicy mogą komentować zawartość tej strony
Utwórz konto w ~20 sekund!
Zarejestruj nowe konto, to proste!
Zarejestruj się »Zaloguj się
Posiadasz własne konto? Użyj go!
Zaloguj się »