Skocz do zawartości

Przeszukaj forum

Pokazywanie wyników dla tagów 'Druk 3d'.

  • Szukaj wg tagów

    Wpisz tagi, oddzielając przecinkami.
  • Szukaj wg autora

Typ zawartości


Kategorie forum

  • Elektronika i programowanie
    • Elektronika
    • Arduino, ESP
    • Mikrokontrolery
    • Raspberry Pi
    • Inne komputery jednopłytkowe
    • Układy programowalne
    • Programowanie
    • Zasilanie
  • Artykuły, projekty, DIY
    • Artykuły redakcji (blog)
    • Artykuły użytkowników
    • Projekty - roboty
    • Projekty - DIY
    • Projekty - DIY (początkujący)
    • Projekty - w budowie (worklogi)
    • Wiadomości
  • Pozostałe
    • Oprogramowanie CAD
    • Druk 3D
    • Napędy
    • Mechanika
    • Zawody/Konkursy/Wydarzenia
    • Sprzedam/Kupię/Zamienię/Praca
    • Inne
  • Ogólne
    • Ogłoszenia organizacyjne
    • Dyskusje o FORBOT.pl
    • Na luzie
    • Kosz

Szukaj wyników w...

Znajdź wyniki, które zawierają...


Data utworzenia

  • Rozpocznij

    Koniec


Ostatnia aktualizacja

  • Rozpocznij

    Koniec


Filtruj po ilości...

Data dołączenia

  • Rozpocznij

    Koniec


Grupa


Znaleziono 5 wyników

  1. Artykuł przeznaczony do wszystkich zapaleńców druku 3D. Można nie kupować dość drogi filament do swojej drukarki 3D, a produkować w domu własny filament z zużytych butelek PET od napojów. Przy tym nieważne, jeżeli butelka jest pognieciona, ona również się nadaje do domowej produkcji filamentu. Filament z butelek ma sporo zalet w porównaniu z firmowym filamentem kupowanym – ABS albo PLA. Przede wszystkim, że produkowany filament nic nie kosztuje, jest po prostu darmowy Produkowany pręt filamentu Jest bardzo sztywny i absolutnie nie łamliwy, wytrzymuje sporo ostrych przegięć. Filament własnej produkcji jest sporo mocniejszy i twardszy, jak na rozciąganie tak i o wiele bardziej odporny na uderzenie. Absolutnie nie pochłania wody, czyli nie trzeba go ani suszyć, ani chronić w zamkniętym zabezpieczonym od nawilżania się opakowaniu. Praktycznie nie skurcze się przy ochłodzeniu w trakcie druku. Nie wymaga chłodzenia drukowanej warstwy. Nie wymaga stołu podgrzewanego. Dla przyczepności wystarczy miejsce na stole posmarować cienką warstwą kleju w sztyfcie na przykład typu „Glue Stick” Wydrukowane detal można obklejać od razu po skończeniu wydruku. Taki filament jest bardzo odporny na działanie rozpuszczalników i środków chemicznych. Jak widać filament produkcji własnej ma sporo zalet w porównaniu z filamentami kupowanymi, a najważniejsze – że jest darmowy. Niżej przedstawiono zdjęcia maszynki do produkcji filamentu: Do domowej produkcji filamentu wykorzystywane zużyte butelki od napojów. Ale butelki muszą być czyste, resztki kleju do nalepki powinni być usuwane. Technologia produkcji jest bardzo prosta i składa się z trzech następujących operacji: Poprawa zgniecionych butelek i butelek z ryflowaną powierzchnią tak, żeby ścianka boczna butelki była gładka. Nacinanie butelek na paski o określonej szerokości, od 5mm do 12mm w zależności od grubości ścianki butelki. Produkcja pręta filamentu z nacinanych pasków na specjalnej maszynce z nawijaniem na bębenek odbiorczy. Na tych wideo można obejrzeć prace maszynki i przyrządu do nacinania pasków z butelek: Zębatka drukowanie:
  2. Witam, jestem początkujący oraz jest to mój pierwszy projekt. Dałem sobie za zadanie zrobienie przez wakacje maszyny, która policzy mi ile jest w moim zbiorze groszy, ale chciałem zrobić to trochę inaczej niż projekty, które widziałem. Wpadłem na pomysł że skoro grosze (1, 2, 5) są różnych średnic to jeżeli ułoży się monetę miedzy fotorezystorem a diodą led to będzie można przypisać jej daną wartość. Tak też zrobiłem i po chwili powstał mały cylinder na bazie Arduino Uno potrafiący rozpoznać monetę. Następnie zacząłem pracę nad tym aby moja maszyna brała monety z podajnika i liczyła je automatycznie. Wyszło że cylinder z ustawionym centralnie serwomechanizmem to najlepsza opcja. Projektowałem na programie Design Spark Mechanical, drukowałem Anet A8. Po wielu nieudanych wydrukach, wkońcu wyszedł ten właściwy i mogłem wszystko odczepić od Arduino Uno... zaczeło się lutowanie do Arduino nano, jak mozna się spodziewać po początkującym długie i mało umiejętne. Po wydrukowaniu całego mechanizmu zaprojektowałem obudowę, a następnie zrobiłem adaptacje do warunków oświetleniowych panujących w jej wnętrzu. Z uwagi na małą precyzję mojego czujnika maszynka czasem się myli, o jakiś grosz/dwa na złotówkę, jednakże jestem zadowolony z mojego pierwszego projektu :)) A oto krótki i prosty kod : #include <Servo.h> #include <Wire.h> #include <LiquidCrystal_I2C.h> LiquidCrystal_I2C lcd(0x27, 2, 1, 0, 4, 5, 6, 7, 3, POSITIVE); Servo servo; int odczytanaWartosc = 0; int tlo = 0; float wartosc = 0; float kwota = 0; void setup() { lcd.begin(16,2); lcd.backlight(); lcd.setCursor(0,0); pinMode(6, OUTPUT); Serial.begin(9600); digitalWrite(6,HIGH); servo.attach(9); } void loop() { kwota = wartosc / 100; lcd.setCursor(0,0); lcd.print("KWOTA"); lcd.setCursor(7,0); lcd.print(kwota); servo.write(180); delay(400); servo.write(80); delay(300); odczytanaWartosc = analogRead(A1); if(odczytanaWartosc > 30 && odczytanaWartosc < 50){wartosc = wartosc + 1;} if(odczytanaWartosc > 22 && odczytanaWartosc < 30){wartosc = wartosc + 2;} if(odczytanaWartosc < 22 && odczytanaWartosc > 3){wartosc = wartosc + 5;} servo.write(0); delay(400);}
  3. ale wiesz o tym, że pet i petg to coś innego? jakoś nie wierzę w te temperatury (pet wymaga więcej niż petg) i w drukowanie na anetce, gdzie powyżej 260 stopni nie ustawisz bez zmiany softu... ale cóż, ja też lubię bajki. tak przy okazji, zaopatrz się w jakiś słownik ortograficzny, bo na razie twoje posty (zarówno tu, jak i na majsterkowie) wyglądają jak wypociny pierwszoklasisty który nie doczytał do końca elementarza.
  4. Aktualizacja: poniższy post został opublikowany przed wydzieleniem części wiadomości do kosza. Proszę wszystkich o zachowanie spokoju, czy naprawdę każdy post musi od razu wnosić jakąś zgryźliwość? Jeśli coś Was ciekawi lub macie jakieś uwagi to można po prostu zapytać lub wyrazić swoje zdanie. Nie trzeba od razu "atakować" drugiej strony. Zastanówcie się jak takie posty brzmią dla nowych członków społeczności oraz osób, które tylko czytają. Takie złośliwości raczej nie zachęcają nikogo do aktywności (ani stałych, ani nowych użytkowników)...
  5. O czymś podobnym myślałem praktycznie od chwili kupna drukarki. I pewnie dalej bym myślał, gdyby nie projekt na Majsterkowie, opisujący podobną (prostszą) konstrukcję. A i tak przymierzałem się do tego jak pies do jeża, zawsze cos mi przeszkadzało (a to nie potrafiłem rozwiązać problemu zasilania, a to miałem coś pilniejszego do roboty, a to nie miałem jakiegoś tam elementu...). Ale po zrobieniu mojej przystawki do OctoPrinta i (całkiem udanych) próbach druku w wielu kolorach - a co się z tym wiąże koniecznością ręcznej zmiany filamentu w odpowiednim momencie - potrzeba stała się raczej pilna. Zacząłem więc od sprecyzowania założeń. Monitorek miał przede wszystkim wyświetlać aktualne dane na temat wydruku (temperatury, stan drukarki, postęp). Jako że główną jego funkcją miało być zwrócenie uwagi na coś ważnego (np. konieczność zmiany filamentu czy wychłodzenie stołu wystarczające do zdjęcia wydruku) w czasie, kiedy byłem zajęty innymi Wielce Ważnymi Rzeczami (np. oglądaniem najnowszego odcinka przygód bohaterskiego Hannibala Smitha czy innego McGyvera) sygnalizacja powinna być głosowa. Jednocześnie najważniejsze parametry (temperatura i postęp) powinny być wyświetlane w czytelny sposób nawet dla krótkowidza bez okularów - czyli żadne nawet największe cyferki, jakiś pasek postępu w kontrastowych kolorach albo jakiś inny czytelny glif. Zasilanie akumulatorowe (na stoliku przy telewizorze nie mam jak podłączyć zasilacza), z możliwością podłączenia ładowarki. Nadałem więc urządzeniu roboczą nazwę OctoMon, wymęczyłem na forum że ktoś mi wreszcie wyoślił temat ładowarki (dzięki @marek1707!) i zabrałem się do konkretnego projektowania. Miałem już wyświetlacz, moduł ESP8266E i parę innych potrzebnych drobiazgów. Początkowo chciałem ESP umieścić na płytce podłączanej bezpośrednio do pinów wyświetlacza - niestety, jakbym ścieżek nie prowadził i tak jednostronna płytka wychodziła mi za duża. Postanowiłem więc dać sobie spokój, zastosować adapter i użyć po prostu płytki uniwersalnej. Ponieważ tego modelu wyświetlacza już uzywałem, eksperymenty z dźwiękiem też się powiodły (przynajmniej w zakresie wystarczającym do uruchomienia gadacza) - mogłem mieć pewność, że od strony programu nie będę już miał żadnych niespodzianek. Postanowiłem więc zaprojektować całą (niezbyt skomplikowaną zresztą) elektronikę. Jako że akurat w Botlandzie pojawił się moduł MAX9837A postanowiłem go wykorzystać jako DAC i wzmacniacz dźwięku. Niestety nie zdał egzaminu... ale o tym później. Zasilanie rozwiązałem w najprostszy chyba z możliwych sposób. Akumulator połączony z ładowarką, do tego przetwornica MT3608 ustawiona na 5V. Wyświetlacz i DAC zasilane bezpośrednio z 5V, ESP przez stabilizator LM1117, połączony z resztą świata jak na schemacie poniżej. Teoretycznie powinno to działać... ...No i już na wstępie pojawił się problem. Podłączony bezpośrednio (znaczy się kabelkami) do ESP i zasilany z USB moduł dźwiękowy pokazał co potrafi - czyli jak mi zepsuć dobry humor. Z powodów niewiadomych raz działał raz nie... a do tego owo niedziałanie powodowane było chyba fanaberiami motylków w Brazylii albo aktualna pogodą na Marsie. Doszedłem do wniosku, że USB to niespecjalnie dobry sposób zasilania, po prowizorycznym podłączeniu jakichś uczciwych 5V wydawało mi się, że działa. Postanowiłem więc sprawdzić wszystko później już na gotowym układzie. Może się to komuś wydać dziwaczne i ryzykowne... ale miałem w odwodzie sprawdzone rozwiązanie które co prawda dawało niższą jakość dźwięku, ale za to nie okazywało żadnych fanaberii Reszta elektroniki to praktycznie tylko połączenie tego wszystkiego do kupy - mogłem się więc zabrać za projekt obudowy. Nie chciałem się bawić w wymyślanie jakichś skomplikowanych kształtów, a więc obudowa została wydrukowana w kilku częściach i skręcona śrubkami M2. Początkowo urządzenie miało mieć jeden klawisz, ale okazało się, że mam wolne dwa piny GPIO, mogłem więc połączyć dwa. Płytę czołową postanowiłem umieścić pod kątem ze względu na wyświetlacz (który nie lubi jak patrzy się na niego lekko z boku, masz się gapić prosto i już!). Oprócz wyświetlacza miały tam się znaleźć głośnik i klawisze. W sumie więc górna część obudowy wygląda na projekcie tak: Otwory obok głośnika są przelotowe - od zewnątrz jest do nich przykręcona kratka mocująca i osłaniająca głośnik. Mocowanie klawiszy jest dopasowane do ratra płytki uniwersalnej (podobnie zresztą, jak mocowania płytki pod ESP8266). Cała reszta elektroniki oprócz DAC-a została umieszczona w dolnej części obudowy: Oprócz koszyka na akumulator są tam mocowania dla ładowarki, przetwornicy i małej płytki pod ESP. Po złożeniu cały układ wygląda tak: Niestety - po złożeniu wszystkiego w całość okazało się, że DAC nie bardzo chce ze mną współpracować. Co prawda wyczyniał swoje hece to dużo rzadziej, ale jednak. Postanowiłem więc wypróbować inny układ: wzmacniacz (wykorzystana połowa układu) oraz prosty filtr: Okazało się, że działa to całkiem znośnie - prawdopodobnie potrzebna by była jeszcze dodatkowa filtracja na zasilaniu (w głośniku słychać czasem ciche trzaski) ale bez tego już mogłem się obejść. Po złożeniu całość wygląda tak: I tu uwaga: ponieważ wątpię, aby ktoś kto chciałby zrobić to urządzonko miał dokładnie takie same elementy jak ja i identycznie spaczone poczucie estetyki - nie zamieszczam STL-i tylko plik dla OpenSCAD-a. Są w nim zawarte wymiary poszczególnych elementów i może być przydatny. No i kilka słów o programie. Program łączy się z serwerem OctoPrint i okresowo odpytuje o stan drukarki i (w przypadku gdy jest to drukowanie) o postęp. Oprócz podstawowych stanów sygnalizowanych przez serwer odróżniane są: Offline - drukarka jest wyłączona lub serwer nie odpowiada Rozgrzewanie stołu Rozgrzewanie dyszy Studzenie stołu - gdy po zakończeniu drukowania temperatura jest nie niższa niż 30°. Wciśnięcie pierwszego klawisza w trybie pauzy powoduje, że monitorek przestanie się odzywać. Bez tego co chwila będzie krzyczał że masz zmienić filament. W trybie studzenia powoduje przejście w tryb bezczynności. Wciśnięcie drugiego klawisza spowoduje podanie głosowo godziny. Dłuższe wciśnięcie pozwala na zmianę gadatliwości programu. Serwer WWW pozwala na zmianę wszystkich ważnych parametrów w dowolnej chwili. W trybie "drukowanie" wyświetlane są informacje o temperaturze dyszy i stołu, postępie w procentach oraz czasu dotychczasowanego i prognozowanego. Dodatkowo wyświetlane są: Adres IP monitora Bieżąca godzina Stan naładowania akumulatora Poziom gadatliwości (tylko wydarzenia/postęp/postęp i pozostały czas) Włączenie OTA Siła sygnału WiFi W trybie Offline monitor zachowuje się jak zegarek - wyświetla bieżące godzinę i datę Jeśli w czasie resetu urządzenia przytrzymamy pierwszy klawisz, startuje ono w trybie AccessPoint. Pod podanym adresem zgłasza się serwer WWW, gdzie można zapisać wszystkie potrzebne parametry. Jeśli w czasie resetu urządzenia przytrzymany drugi klawisz, startuje ono w trybie awaryjnym. W tym trybie nie będzie działać nic oprócz OTA. Przydatne, jeśli coś tak naknocimy w programie że nie będziemy mieli dostępu do OTA w normalnym trybie. Program został napisany z pomocą Arduino IDE. Biblioteka syntezy mowy jest na githubie. Pozostałe biblioteki instalowane były "po bożemu" poprzez managera bibliotek. Syntezator mowy to zwykły syntezator formantowy (użyłem w większości oryginalnego kodu D. Klatta z początku lat 80-tych), dostosowany kiedyś przeze mnie do języka polskiego. Dostosowanie nie jest może najlepsze - ale i syntezator Klatta nie jest mistrzem dykcji Kalibrację miernika poziomu akululatora należy przeprowadzić włączając opcję DEBUG w Octomon.h i podając w pliku wifi.cpp adres i port , na którym będziemy odbierać komunikaty UDP. Należy do wejścia przetwornicy podłączyć woltomierz, odczytać komunikat "Volts=..." i w pliku "display.cpp" w funkcji displayBattery() w linijce: ivolt = ivolt * 413 / 753; podstawić właściwe wartości (czyli napięcie akumulatora w setnych wolta oraz wartość odczytaną a przetwornika A/C). W moim przypadku jak widać woltomierz podał 4.13V a przetwornik zinterpretował to jako wartość 753 Aby program działał, należy w Arduino IDE ustawić zegar 160 MHz, tryb pamięci QIO oraz częstotliwość Flash 80 MHz. Dołączony programik bmconvert.py pozwala na zapisanie jako tablicę w C obrazka PNG. Obrazek powinien być zapisany w trybie indeksowanej palety kolorów bez przezroczystości, będzie przetworzony na skompresowaną w RLE tablicę, a do jego wyświetlenia należy użyć funkcji drawBitMap() z pliku display.cpp (lub analogicznej). Sprawdzony na Linuksie, ale powinien działać na wszystkim gdzie się da zainstalować Pythona 2.7 i PIL. Urządzenia używam od jakichś dwóch tygodni, na razie jest bardzo przydatne. octomon.zip
×
×
  • Utwórz nowe...